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the nonlocal diffusion kernel and the reaction term. We use the comparison

principle of the scalar equation and the method of upper and lower solutions
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1 Introduction

In this paper, we study the existence and stability of transition wave solution for the following

non-autonomous Fisher-KPP equations with nonlocal dispersal

∂u

∂t
(t, x) =

∫

R

J(θtω, y)[u(t, x− y)− u(t, x)]dy + a(θtω)u(t, x)(1 − u(t, x)), (1.1)

where t ∈ R, x ∈ R, ω ∈ Ω, (Ω,F ,P, {θt}t∈R) is an ergodic metric dynamical system on Ω, and

a : Ω → (0,∞) is measurable, and aω(t) := a(θtω) is locally Hölder continuous for every ω ∈ Ω.

Here Jω := J(θtω, y) denotes a nonnegative dispersal kernal. The state variable u = u(t, x)

represents the population density of the species located at time t and the spatial position x ∈ R.

System (1.1) describes the temporal and spatial evolution of species invasions into some empty

environments. Here we not only give the time-dependent Fisher-KPP term, but also consider
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the time-varying dispersal kernel function Jω. The kernel function Jω satisfies the following

assumptions.

Assumption 1.1 (Kernel Jω = J(θtω, y)). The kernel Jω : Ω × R → [0,∞) satisfies the

following assumptions:

(i) The function Jω is measurable, nonnegative and J(·, y) ∈ L∞
+ (Ω,F ,P) for almost every

y ∈ R;

(ii) The map J̃ω : y 7→ J(·, y) from R into L∞(Ω,F ,P) is measurable and integrable, namely

J̃ω ∈ L1 (R;L∞(Ω,F ,P));

(iii) Its abscissa of convergence

σ(J̃ω) = sup

{
µ ≥ 0 : the improper integral

∫ ∞

−∞
eµyJ̃ω(y)dy converge in R

}

satisfies

σ(J̃ω) > 0.

At present, many scholars are devoted to studying the existence and stability of traveling

wave solutions, see [2, 3, 32, 40]. Fisher [16] and Kolmogorov, Petrovsky and Piskunov [21]

did pioneering work on the traveling wave solution and take-over properties of the Fisher-KPP

reaction-diffusion equation. Note that for periodic media in time and/or space, it is natural to

extend the classical traveling wave solution to the so-called periodic traveling wave solutions or

pulsating traveling fronts. For general time and/or space dependent environment, [7, 8] extend

traveling wave solutions in the classical sense to the so-called transition fronts or generalized

traveling waves.

For the time and/or space heterogeneous reaction-diffusion equation, there are many studies

on existence of traveling wave solutions and the spreading speed, see [9, 17, 18, 19, 22, 23, 24].

Shen first proved the existence of transition waves for bistable nonlinearities [36], and further

studied the monostable equation with time unique ergodic coefficients [37]. Shen also studied

the existence of generalized traveling waves in time recurrent and space periodic monostable

equations [38]. Salako and Shen studied the existence of transition fronts of random and nonau-

tonomous Fisher-KPP equations [31], respectively. Nadin and Rossi [27] investigated transition

wave solution of the monostable equations in general time heterogeneous environment. They

furthermore explored the existence of transition waves for Fisher-KPP equations with general

time-heterogeneous and space-periodic coefficients [29]. Nadin [28] studied the existence of trav-

eling fronts in space-time periodic media. Rossi and Ryzhik studied the transition waves for

a class of space-time dependent monostable equations [30]. Ambrosio, Ducrot and Ruan [1]

studied the generalized traveling wave solutions of a non-cooperative reaction-diffusion system

in a general time heterogeneous environment.

In addition to the random reaction-diffusion equation, nonlocal dispersal is more reasonable for

some species to travel for some distance, and their movement and interactions may occur between

non-adjacent spatial locations [5, 20, 14]. There are many studies devoted to the existence,

2



nonexistence, and stability problems of traveling wave solutions to the nonlocal diffusion equation

[6, 10, 12, 13, 25].

For the time and/or space heterogeneous nonlocal diffusion equation, Jin and Zhao [20] studied

the spatial dynamics of a periodic population model with dispersal. Coville et al. [11] studied

the pulsating fronts for nonlocal dispersion and KPP nonlinearity. Bao et al. [4] explored

the traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in

periodic habitats. Shen et al. [33] studied the transition fronts in nonlocal Fisher-KPP equations

in time heterogeneous media. Shen also studied the stability of transition waves and positive

entire solutions of Fisher-KPP equations with time and space dependence [39]. Dcurot and Jin

[15] studied the generalized travelling fronts for non-autonomous Fisher-KPP equations with

nonlocal diffusion. They dealt with a general time heterogeneous both for dispersal kernel

function and KPP nonlinearity.

For the random reaction-diffusion equation, Shen [35] first introduced a notion of traveling

waves in general random media, which is a natural extension of the classical notion of traveling

waves. More specifically, She explored the traveling waves in diffusive random media, includ-

ing time and/or space recurrent, almost periodic, quasiperiodic, periodic ones as special cases.

Mierczyński et al. studied the uniform persistence for random parabolic Kolmogorov systems

[26]. Shen et al. [34] studied front propagation phenomena of ignition type reaction-diffusion

equations in random media. However, there are a few studies on the random nonlocal diffusion

equation. In this paper, we focus on the existence and stability of random traveling wave solu-

tions of nonlocal diffusion Fisher-KPP equations. Specifically, different from Ducrot and Jin’s

work [15], we further consider the stability of random transition waves. For solving the stability

problem of system (1.1), the construction of the lower solution plays an important role. Based

on this, we also consider the existence of traveling wave solutions by constructing lower solutions

different from those in the Ducrot and Jin’s research [15].

Now we are ready to introduce the definition of a random transition front for (1.1). Shen gave

a similar definition for random transition front, see [35].

Definition 1.2. An entire solution u(t, x;ω) is called a random traveling wave solution or a

random transition front of (1.1) connection 1 and 0 if for a.e. ω ∈ Ω,

u(t, x;ω) = U(x−C(t;ω), θtω), (1.2)

where U(x, ω) and C(t;ω) are measurable in ω, and for a.e. ω ∈ Ω,

0 < U(x, ω) < 1 (1.3)

and

lim
x→−∞

U(x, θtω) = 1, lim
x→+∞

U(x, θtω) = 0 uniformly in t ∈ R. (1.4)

Moreover, if Ux(x, ω) < 0 for a.e. ω ∈ Ω and all x ∈ R, u(t, x;ω) is said to be a nonotone

random transition front.
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We observe that u(t, x;ω) = v(t, x − C(t;ω)) with C(t;ω) being differential in t solves (1.1)

and satisfies c(t;ω) = C ′(t;ω) if and only if v(t, x) satisfies

∂tv(t, x) = c(t;ω)∂xv(t, x)+

∫

R

J(θtω, y)[v(t, x−y)−v(t, x)]dy+a(θtω)v(t, x)(1−v(t, x)). (1.5)

This paper is organized as follows. In the next section, we establish some preliminary results

and state our main results. In Section 3, we mainly consider the existence of random transition

waves of system (1.1). We get the results by constructing appropriate upper and lower solutions

and using the comparison principle of the scalar equation. In Section 4, we prove the asymptotic

stability of random transition waves for non-autonomous Fisher-KPP equations with nonlocal

diffusion.

2 Preliminaries and main results

In this section, we first recall the definitions and some properties of least mean and upper mean

values for functions in L∞(R). To do so we need to introduce some notations that will be used

throughout this paper. Second, we present our main results on the existence and stability of

random transition fronts for system (1.1).

First, we introduce the space aspects. Let

Cb
unif(R) = {u ∈ C(R)|u is bounded and uniformly continuous }

with norm ‖u‖∞ = supx∈R |u(x)| for u ∈ Cb
unif(R).

For given u0 ∈ X := Cb
unif (R) and ω ∈ Ω, let u (t, x;u0, ω) be the solution of (1.1) with

u (0, x;u0, ω) = u0(x). Note also that u ≡ 0 and u ≡ 1 are two constant solutions of (1.1).

Now we introduce the following notations and assumption related to (1.1). Let

⌊a⌋(ω) = lim inf
t−s→+∞

1

t− s

∫ t

s

a(θτω)dτ := lim
r→+∞

inf
t−s≥r

1

t− s

∫ t

s

a(θτω)dτ, (2.1)

and

⌈a⌉(ω) = lim sup
t−s→+∞

1

t− s

∫ t

s

a(θτω)dτ := lim
r→+∞

sup
t−s≥r

1

t− s

∫ t

s

a(θτω)dτ. (2.2)

Notice that

⌊a⌋(θtω) = ⌊a⌋(ω) and ⌈a⌉(θtω) = ⌈a⌉(ω),∀t ∈ R, (2.3)

and that

⌊a⌋(ω) = lim inf
t,s∈Q,t−s→+∞

1

t− s

∫ t

s

a(θτω)dτ and ⌈a⌉(ω) = lim sup
t,s∈Q,t−s→+∞

1

t− s

∫ t

s

a(θτω)dτ. (2.4)

Then by the countability of the set Q of rational numbers, both ⌊a⌋(ω) and ⌈a⌉(ω) are measurable

in ω.

Next, we introduce the following two assumptions:

(H1) 0 < inft∈R a
ω(t) ≤ supt∈R a

ω(t) <∞, for a.e. ω ∈ Ω.
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(H2) 0 < ⌊a⌋(ω) ≤ ⌈a⌉(ω) <∞, for a.e. ω ∈ Ω.

Remark 2.1. (i) We observe from (H1) that

0 < inf
t∈R

aω(t) ≤ ⌊a⌋(ω) ≤ ⌈a⌉(ω) ≤ sup
t∈R

aω(t) <∞, for a.e. ω ∈ Ω.

(ii) Here we specifically state that the assumption (H1) is mainly used to prove the existence

of random traveling wave solution, see Theorem 2.6, while the weaker hypothesis (H2) is

used to prove the stability of random transition front, see Theorem 2.7.

Note that assumption (H2) implies that ⌊a⌋(·), ⌈a⌉(·) ∈ L1(Ω,F ,P) (see Lemma 2.1 in [31]). By

assumption (H2) and the ergodicity of the metric dynamical system
(
Ω,F ,P, {θt}t∈R

)
, there are

⌊a⌋, ⌈a⌉ ∈ R+and a measurable subset Ω0 ⊂ Ω with P (Ω0) = 1 such that





θtΩ0 = Ω0, ∀t ∈ R,

lim inf
t−s→∞

1

t− s

∫ t

s

a (θτω) dτ = ⌊a⌋, ∀ω ∈ Ω0,

lim sup
t−s→∞

1

t− s

∫ t

s

a (θτω) dτ = ⌈a⌉, ∀ω ∈ Ω0.

(2.5)

Throughout this paper, ⌊a⌋ and ⌈a⌉ are referred to as the least mean and the upper mean of

a(·), respectively.

The following lemma gives reformulation of the least and upper mean value, see [27, 31] for

more details.

Lemma 2.2. Suppose that a(θtω) ∈ L∞(Ω), t ∈ R and that 0 < ⌊a⌋ ≤ ⌈a⌉ <∞, where

⌊a⌋ = lim inf
t−s→∞

1

t− s

∫ t

s

a(θτω)dτ, ⌈a⌉ = lim sup
t−s→∞

1

t− s

∫ t

s

a(θτω)dτ.

Then

⌊a⌋ = sup
Aω∈W

1,∞
loc

(R)∩L∞(R)

essinfτ∈R
(
a(θτω)−A′

ω(τ)
)
, for a.e. ω ∈ Ω,

and

⌈a⌉ = inf
Aω∈W

1,∞
loc

(R)∩L∞(R)
esssupτ∈R

(
a(θτω)−A′

ω(τ)
)
, for a.e. ω ∈ Ω.

Proof. The proof of this lemma follows from a proper modification of the proof of [31, Lemma

2.2]. For the sake of completeness we give a proof here. We fix 0 < α < ⌊a⌋. It follows from

⌈a⌉ <∞ that there exists T > 0 such that

α <
1

T

∫ s+T

s

a(θτω)dτ < 2⌈a⌉, ∀s ∈ R, ω ∈ Ω. (2.6)

Define

Aω(t) =

∫ t

kT

(a(θτω)− αk) dτ, ∀t ∈ [kT, (k + 1)T ],

5



where

αk :=
1

T

∫ (k+1)T

kT

a(θτω)dτ, ∀k ∈ Z, ω ∈ Ω.

It is clear that Aω ∈W
1,∞
loc (R) ∩ L∞(R) with

αk = a(θtω)−A′
ω(t), for t ∈ (kT, (k + 1)T ), ω ∈ Ω. (2.7)

On the one hand, by using (2.6), we deduce that

‖Aω‖∞ ≤ 2T ⌈a⌉ and α < αk,∀k ∈ Z, ω ∈ Ω.

It follows from (2.7) that

α ≤ sup
Aω∈W

1,∞
loc (R)∩L∞(R)

essinft∈R
(
a(θtω)−A′

ω(t)
)
, ω ∈ Ω.

Since α is arbitrarily chosen less than ⌊a⌋, we derive that

⌊a⌋ ≤ sup
Aω∈W

1,∞
loc (R)∩L∞(R)

essinft∈R
(
a(θtω)−A′

ω(t)
)
, ω ∈ Ω.

On the other hand, for each given Aω ∈W
1,∞
loc (R) ∩ L∞(R) and t > s, we have that for ω ∈ Ω

1

t− s

∫ t

s

a(θτω)dτ ≥ essinfτ∈R
(
a(θτω)−A′

ω(τ)
)
+

(Aω(t)−Aω(s))

t− s

≥ essinfτ∈R
(
a(θτω)−A′

ω(τ)
)
−

2‖Aω‖∞
t− s

.

Hence

⌊a⌋ = lim inf
t−s→∞

1

t− s

∫ t

s

a(θτω)dτ ≥ essinfτ∈R
(
a(θτω)−A′

ω(τ)
)
,∀Aω ∈W

1,∞
loc (R)∩L∞(R), ω ∈ Ω.

This completes the proof of the lemma.

Next, we define the following two functions, which are strongly related to the main results of

this work. We consider the function L : R × Ω × [0, σ(J̃ω)) → R and L(t; ·, µ) ∈ L∞(Ω,F ,P)

given by

L(t;ω, µ) :=

∫

R

J(θtω, y)e
µy dy, µ ∈ [0, σ(J̃ω)), ω ∈ Ω, (2.8)

and the function C : R× Ω× (0, σ(J̃ω)) → R and C ∈ L∞(Ω,F ,P) given by

C(t;ω, µ) =

∫ t

0
c(s;ω, µ)ds, µ ∈ (0, σ(J̃ω)), ω ∈ Ω, (2.9)

where

c(t;ω, µ) := µ−1

[∫

R

J(θtω, y) (e
µy − 1) dy + a(θtω)

]
, µ ∈ (0, σ(J̃ω)), ω ∈ Ω. (2.10)

Proposition 2.3. Let Assumption 1.1 be satisfied. Then the following properties hold:
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(i) The maps L defined above in (2.8) is of class C1 from R× Ω× (0, σ(J̃ω)) into R.

(ii) Consider the sets

M =
{
µ ∈ (0, σ(J̃ω)) : ∃ µ′ ∈ (µ, σ(J̃ω)),∀k ∈

(
µ, µ′

]
, ⌊c(t;ω, µ) − c(t;ω, k)⌋ > 0

}
,

and

M̃ =
{
µ ∈ (0, σ(J̃ω)) : ∃ µ′ ∈ (µ, σ(J̃ω)),

⌊
c(t;ω, µ) − c

(
t;ω, µ′

)⌋
> 0

}
.

Then one has M = M̃ and there exists µ∗ ∈ (0, σ(J̃ω)] such that

M = (0, µ∗) .

(iii) One also has:

⌊
−
dc(t;ω, µ)

dµ

⌋
> 0,∀µ ∈ (0, µ∗) and

⌊
−
dc (t;ω, µ∗)

dµ

⌋
= 0 if µ∗ < σ(J̃ω).

(iv) The function µ 7→ ⌊c(t;ω, µ)⌋ is decreasing on M .

Proof. The proof is similar to the Ducrot and Jin [15], so we omit it.

Proposition 2.4 (Comparison principle). Let t0 ∈ R and T > 0 be given. Let Jω : Ω × R →

[0,∞) be a measurable kernel such that the map ω 7→
∫
R
J(θtω, y)dy is bounded. Let u and ū

be two uniformly continuous functions defined from [t0, t0 + T ] × R into the interval [0, 1] such

that for each x ∈ R, the maps u(·, x) and ū(·, x) both belong to W 1,1 (t0, t0 + T ), satisfying

u (t0, ·) ≤ ū (t0, ·) and, for all x ∈ R and for almost every t ∈ (t0, t0 + T ),

∂tū(t, x) ≥

∫

R

J(θtω, y)[ū(t, x− y)− ū(t, x)]dy + a(θtω)ū(t, x)(1− ū(t, x)),

∂tu(t, x) ≤

∫

R

J(θtω, y)[u(t, x− y)− u(t, x)]dy + a(θtω)u(t, x)(1− u(t, x)).

Then u ≤ ū on [t0, t0 + T ]× R.

Proof. The proof is similar to the Ducrot and Jin [15], so we omit it.

Lemma 2.5 ([35]). Let
(
Ω, {θt}t∈R

)
be ergodic and h ∈ L1(Ω,F ,P) (h is real-valued), then there

is Ω0 ∈ F with P (Ω0) = 1 such that

lim
t→∞

1

t

∫ t

0
h (θsω) ds =

∫

Ω
h(ω)dP(ω)

for all ω ∈ Ω0.

Using the above notation, our next result ensures the existence of random transition front for

system (1.1) with the speed function c(t;ω, µ), for each µ ∈ (0, µ∗).

Theorem 2.6. Assume that (H1) holds and for each µ ∈ (0, µ∗), where µ∗ is defined in Propo-

sition 2.3.
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(1) Problem (1.1) possesses a monotone random transition wave solution u(t, x;ω) = Uµ
(
x −

C(t;ω, µ),θtω
)
with C(t;ω, µ) =

∫ t

0 c(s;ω, µ)ds, where c(t;ω, µ) is defined in (2.10). Moreover,

for any ω ∈ Ω0,

lim
x→∞

sup
t∈R

∣∣∣∣
Uµ (x, θtω)

e−µx
− 1

∣∣∣∣ = 0 and lim
x→−∞

sup
t∈R

|Uµ (x, θtω)− 1| = 0. (2.11)

(2) There exist c∗ ∈ R and Uµ
∗ (·) ∈ Cb

unif (R;R) such that for a.e. ω ∈ Ω,

lim
t→∞

C(t;ω, µ)

t
= c∗, (2.12)

lim
t→∞

1

t

∫ t

0
Uµ(x, θsω)ds = Uµ

∗ (x), ∀x ∈ R. (2.13)

Next, we study the stability of random transition fronts of (1.1).

Theorem 2.7. Assume that (H2) hold and c(t;ω, µ) is defined in (2.10). Then for given µ ∈

(0, µ∗), the random wave solution u(t, x) = U (x− C(t;ω, µ), θtω) with

lim
x→∞

U (x; θtω)

e−µx
= 1 and C(t;ω, µ) =

∫ t

0
c(s;ω, µ)ds,

is asymptotically stable, that is, for any ω ∈ Ω0 and u0 ∈ Cb
unif(R) satisfying that

inf
x≤x0

u0(x) > 0, ∀x0 ∈ R, lim
x→∞

u0(x)

U(x− C(0;ω, µ), ω)
= 1, (2.14)

there holds

lim
t→∞

∥∥∥∥
u (t, ·;u0, ω)

U (· − C(t;ω, µ), θtω)
− 1

∥∥∥∥
∞

= 0.

3 Existence of Random Transition Fronts

In this section, we study the existence of random transition fronts of (1.1), see Theorem 2.6.

We divide the proof of Theorem 2.6 into two steps: (1). we give some lemmas to construct the

upper and lower solutions of (1.1); (2). we construct the limit behavior to complete the proof

of the theorem.

In this section, we shall always suppose that (H1) holds. Let Ω0 be as in (2.5). Therefore, we

have

0 < inf
t∈R

aω(t) ≤ sup
t∈R

aω(t) <∞, for a.e. ω ∈ Ω0.

Recall that u(t, x;ω) = v(t, x − C(t;ω)) with C(t;ω) being differential in t solves (1.1) if and

only if v(t, x) satisfies (1.5). Hence, to prove the existence of random transition front of (1.1) of

the form u(t, x;ω) = U (x− C(t;ω), θtω) for some differentiable C(t;ω) and some U(x, ω) which

is measurable in ω and

U (−∞, θtω) = 1 and U (∞; θtω) = 0, uniformly in t,
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it is equivalent to prove the existence of entire solutions of (1.5) (with c(t;ω) = C ′(t;ω) ) of the

form v(t, x) = V (t, x;ω) such that





ω 7→ V (t, x;ω), ω 7→ C(t;ω) are measurable,

V (t, x;ω) = V (0, x; θtω) ,

limx→−∞ V (t, x;ω) = 1 and limx→∞ V (t, x;ω) = 0 uniformly in t.

3.1 Construction of sub and super solutions

In this section, we give some lemmas to construct upper and lower solutions of (1.5).

Lemma 3.1. Suppose that (H1) holds. Let ω ∈ Ω0 and 0 < µ < µ∗. Let

φ
µ
+(x) = min {1, φµ(x)} ,

where φµ(x) = e−µx. Then

v
(
t, x;φµ+(·), ω

)
≤ φ

µ
+(x) ∀t > 0, x ∈ R, ω ∈ Ω0.

Proof. Since a(ω) > 0 for every ω ∈ Ω0 and the function φµ satisfies

φ
µ
t (x) = c(t;ω, µ)φµx(x) +

∫

R

J(θtω, y)[φ
µ(x− y)− φµ(x)]dy + a(θtω)φ

µ(x), x ∈ R,

we have that v(t, x) = φµ(x) is a super-solution of (1.5) with c(t;ω) = c(t;ω, µ). We also note

that v(x, t) ≡ 1 is a solution of (1.5). Therefore, by comparison principle, we complete the proof

of Lemma 3.1.

Lemma 3.2. Suppose that (H1) holds. Let ω ∈ Ω0. Then for every 0 < µ < µ̃ < min {2µ, µ∗},

there exist {tk}k∈Z with tk < tk+1 and limk→±∞ tk = ±∞, Aω ∈ W
1,∞
loc (R) ∩ L∞(R) with

Aω(·) ∈ C1 ((tk, tk+1)) for k ∈ Z, and a positive real number dω such that for every d ≥ dω the

function

φµ,d,Aω(t, x) := e−µx − de

(

µ̃
µ
−1
)

Aω(t)−µ̃x
,

satisfies

Gω,µ
(
φµ,d,Aω

)
(t, x) ≤ 0 for t ∈ (tk, tk+1) , x ≥

ln d

µ̃− µ
+
Aω(t)

µ
, k ∈ Z,

where

Gω,µ(v)(t, x) := vt −

∫

R

J(θtω, y)[v(t, x − y)− v(t, x)]dy − c(t;ω, µ)vx − a (θtω) v(1 − v).

Proof. For given 0 < µ < µ̃ < min {2µ, µ∗}, it follows from Proposition 2.3 that

⌊c(t;ω, µ) − c (t;ω, µ̃)⌋ > 0.
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Using Lemma 2.2, there exist T > 0, ε > 0 and Aω ∈ W
1,∞
loc (R) ∩ L∞(R) such that Aω ∈

C1 ((tk, tk+1)), where tk = kT for k ∈ Z and

µ̃c(t;ω, µ) −

∫

R

J(θtω, y)(e
µ̃y − 1)dy − a(θtω) +

(
µ̃

µ
− 1

)
A′

ω(t) ≥ ε. (3.1)

We fix the above ε > 0 and Aω(t). Let d > 0 to be determined later. By some computation, we

have that

φ
µ,d,Aω

t (t, x) = −d

(
µ̃

µ
− 1

)
A′

ω(t)e

(

µ̃
µ
−1
)

Aω(t)−µ̃x
, (3.2)

and

φµ,d,Aω
x (t, x) = −µe−µx + µ̃de

(

µ̃
µ
−1
)

Aω(t)−µ̃x
. (3.3)

It follows from (3.2) and (3.3) that for any t ∈ (tk, tk+1)

Gω,µ
(
φµ,d,Aω

)
(t, x)

= φ
µ,d,Aω

t (t, x)−

∫

R

J(θtω, y)[φ
µ,d,Aω(t, x− y)− φµ,d,Aω(t, x)]dy − c(t;ω, µ)φµ,d,Aω

x (t, x)

− a (θtω)φ
µ,d,Aω(t, x)(1 − φµ,d,Aω(t, x))

= de

(

µ̃
µ
−1
)

Aω(t)−µ̃x

[
−

(
µ̃

µ
− 1

)
A′

ω(t) +

∫

R

J(θtω, y)(e
µ̃y − 1)dy − µ̃c(t;ω, µ) + a(θtω)

]

− e−µx

[∫

R

J(θtω, y)(e
µy − 1)dy − µc(t;ω, µ) + a(θtω)

]
+ a(θtω)(φ

µ,d,Aω)2(t, x).

(3.4)

Recall that

c(t;ω, µ) := µ−1

[∫

R

J(θtω, y) (e
µy − 1) dy + a(θtω)

]
.

Thus we have that for t ∈ (tk, tk+1)

Gω,µ
(
φµ,d,Aω

)
(t, x)

= de

(

µ̃
µ
−1
)

Aω(t)−µ̃x
[
−

(
µ̃

µ
− 1

)
A′

ω(t) +

∫

R

J(θtω, y)(e
µ̃y − 1)dy − µ̃c(t;ω, µ) + a(θtω)

]

+ a(θtω)(φ
µ,d,Aω)2(t, x).

(3.5)

On the one hand, by direct calculation, we have

φµ,d,Aω(t, x) ≥ 0, for x ≥
ln d

µ̃− µ
+
Aω(t)

µ
, t ∈ (tk, tk+1) , k ∈ Z. (3.6)

On the other hand, we have that

φµ,d,Aω(t, x) ≤ e−µx ≤ e
−µ
(

ln d
µ̃−µ

+
Aω(t)

µ

)

, for x ≥
ln d

µ̃− µ
+
Aω(t)

µ
, t ∈ (tk, tk+1) , k ∈ Z. (3.7)
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Using (3.1), (3.5), (3.6) and (3.7), we have that

Gω,µ
(
φµ,d,Aω

)
(t, x) ≤ −dεe

(

µ̃
µ
−1
)

Aω(t)−µ̃x
+ a(θtω)e

−2µx

≤ e

(

µ̃
µ
−1
)

Aω(t)−µ̃x
[
−dε+ a(θtω)e

(µ̃−2µ)x−
(

µ̃
µ
−1
)

Aω(t)
]

≤ e

(

µ̃
µ
−1
)

Aω(t)−µ̃x


−dε+ d

(

1−
µ

µ̃− µ

)

sup
t∈R

a(θtω)e
−Aω(t)




= de

(

µ̃
µ
−1
)

Aω(t)−µ̃x


−ε+ d

−
µ

µ̃− µ sup
t∈R

a(θtω)e
−Aω(t)




≤ 0.

(3.8)

The last inequality above holds by choosing

d ≥

(
supt∈R a(θtω)

εe||Aω ||∞

) µ̃− µ

µ
.

Thus we complete the proof of the lemma.

Let 0 < µ < µ̃ < min {2µ, µ∗} be given. Let Aω and dω be given by Lemma 3.2. Let

xω(t) =
ln dω + ln µ̃− lnµ

µ̃− µ
+
Aω(t)

µ
. (3.9)

Note that for any given t ∈ R,

φµ,dω ,Aω (t, xω(t)) = sup
x∈R

φµ,dω ,Aω(t, x) = e
−µ
(

lnd
µ−µ

+
Aω(t)

µ

)

e
−µ

ln µ̃ lnµ
µ−µ

(
1−

µ

µ̃

)
.

We introduce the following function:

φ
µ
− (t, x; θt0ω) =




φµ,dω ,Aω (t+ t0, x) , if x ≥ xω (t+ t0) ,

φµ,dω ,Aω (t+ t0, xω (t+ t0)) , if x ≤ xω (t+ t0) .

It is clear that

0 < φ
µ
− (t, x; θt0ω) < φ

µ
+(x) ≤ 1, ∀t ∈ R, x ∈ R, t0 ∈ R

and

lim
x→∞

sup
t>0,t0∈R

∣∣∣∣
φ
µ
− (t, x; θt0ω)

φ
µ
+(x)

− 1

∣∣∣∣ = 0. (3.10)

3.2 Construction of a solution by a limiting procedure

For any integer n ≥ 1, we consider the following Cauchy problem, for t ≥ −n and x ∈ R,




∂tv(t, x) = c(t;ω, µ)∂xv(t, x) +
∫
R
J(θtω, y)[v(t, x − y)− v(t, x)]dy + a(θtω)v(t, x)(1 − v(t, x)),

v(−n, x) = φ
µ
+(−n, x).

(3.11)
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We denote by v(t, x;φµ+, θ−nω) the solution of (3.11) and define the function u(t, x, φµ+, θ−nω)

by

u(t, x, φµ+, θ−nω) = v
(
t, x− C(t; θ−nω, µ), φ

µ
+, θ−nω

)
. (3.12)

It follows from (3.11) and (3.12) that the function u(t, x, φµ+, θ−nω) satisfies the following equa-

tion




∂tu(t, x) =
∫
R
J(θtω, y)[u(t, x − y)− u(t, x)]dy + a(θtω)u(t, x)(1 − u(t, x)), t ≥ −n, x ∈ R,

u(−n, x) = φ
µ
+(−n, x− C(t; θ−nω, µ)), x ∈ R.

(3.13)

It follows from Lemmas 3.1, 3.2 and comparison principle stated in Proposition 2.4 that the

solution u(t, x, φµ+, θ−nω) of (3.13) for all t ≥ −n and x ∈ R satisfies

φ
µ
−(t, x−C(t; θ−nω, µ); θ−nω) ≤ u(t, x, φµ+, θ−nω) ≤ φ

µ
+(x− C(t; θ−nω, µ)), ∀t > 0, x ∈ R.

Furthermore, since the function x 7→ φ
µ
+(x− C(t; θ−nω, µ)) is nonincreasing on R, the function

x 7→ u(t, x, φµ+, θ−nω) is also nonincreasing with respect to x ∈ R for each given t ≥ −n.

Our aim now is to pass to the limit n→ ∞ in the sequence of function
{
u(t, x;φµ+, θ−nω)

}
to

construct a random transition front of system (1.1). To achieve our aim, we first discuss in the

following lemma some important Lipschite regularity estimates, inspired by [15, 33].

Lemma 3.3. There exists some constant m > µ large enough such that for all n ≥ 1 one has

∣∣u(t, x+ h, φ
µ
+, θ−nω)− u(t, x, φµ+, θ−nω)

∣∣ ≤ min
{
1, em|h| − 1

}
,∀t ≥ −n,∀x ∈ R.

For all n ≥ 1 one has ∂tu(t, x, φ
µ
+, θ−nω) ∈ L∞((−n,∞) × R × Ω0) and the following estimate

holds ∥∥∂tu(t, x, φµ+, θ−nω)
∥∥
∞

≤ 2

∫

R

‖ J(·, y)‖∞ dy + 1,∀n ≥ 1.

In other words, the sequence
{
u(t, x, φµ+, θ−nω)

}
is uniformly bounded (with respect to n ) in the

Lipschitz norm on the set [−n,∞)×R× Ω0.

Proof. The proof is similar to the proof of Lemma 5.1 in [15], so we omit it.

By using Lemma 3.3 and Arzelà-Ascoli theorem, there exists a subsequence of {u(t, x, φµ+,

θ−nω)}, still denoted with the same indexes, and a globally Lipschitz continuous function

u(t, x;φµ+, ω) : R
2 × Ω0 → R such that

lim
n→+∞

u(t, x, φµ+, θ−nω) = u(t, x;φµ+, ω) locally uniformly for (t, x) ∈ R2, ω ∈ Ω0. (3.14)

Therefore, we can define the Lipschitz continuous function v(t, x, φµ+, ω) by

v
(
t, x, φ

µ
+, ω

)
= u(t, x+ C(t;ω, µ), φµ+, ω),∀(t, z) ∈ R2, ω ∈ Ω0. (3.15)

Based on Lemmas 3.1-3.3, we summarize the following propositions, which gives some impor-

tant properties satisfied by the function v(t, x, φµ+, ω).

12



Proposition 3.4. The function v(t, x, φµ+, ω) enjoys the following properties.

(i) It is nonincreasing with respect to x ∈ R, for all t ∈ R, ω ∈ Ω0, and is globally Lipschitz

continuous on R2 × Ω0;

(ii) It satisfies the following estimate for all (t, x) ∈ R2, ω ∈ Ω0

φ
µ
− (t, x;ω) ≤ v(t, x, φµ+, ω) ≤ φ

µ
+(x), ∀t > 0, x ∈ R.

(iii) It satisfies (1.5) with c(t;ω, µ) = C ′(t;ω, µ) for any x ∈ R and for a.e. t ∈ R and ω ∈ Ω0.

Hence to complete the proof of Theorem 2.6, it remains to study the behavior of v(t, x, θtω)

as x → ±∞, that is, u(t, x + C (t, ω, µ) , θtω) as x → ±∞. We first prove the behavior of

u(t, x+ C (t, ω, µ) , θtω) as x→ −∞, see Lemma 3.5.

Lemma 3.5. For every ω ∈ Ω0,

lim
x→−∞

u
(
t, x+ C (t, θt0ω, µ) ;φ

µ
+ (0, ·; θt0ω) , θt0ω

)
= 1

uniformly in t > 0 and t0 ∈ R.

Proof. Define

v (t, x; θt0ω) = u
(
t, x+ C (t, θt0ω, µ) ;φ

µ
+ (0, ·; θt0ω) , θt0ω

)
, (3.16)

and

x∗ =
ln dω + ln µ̃− lnµ

µ̃− µ
−

‖Aω‖∞
µ

.

It follows from (3.9) and Proposition 3.4 that

0 <

(
1−

µ

µ̃

)
e
−µ
(

ln dω+ln µ̃−lnµ
µ̃−µ

+
‖Aω‖∞

µ

)

≤ inf
t>0,t0∈R

v
(
t, x∗;φµ+ (0, ·; θt0ω) , θt0ω

)
. (3.17)

Moreover, x 7→ v (t, x; θt0ω) is decreasing and satisfies

vt (t, x) =

∫

R

J(θtθt0ω, y)[v(t, x− y)− v(t, x)]dy + c (t; θt0ω, µ) vx + a (θtθt0ω) v(1 − v),

where c (t; θt0ω, µ) = C ′ (t; θt0ω, µ). It follows from (3.17) that

inf
t>0,t0∈R

v
(
t, x∗;φµ+ (0, ·; θt0ω) , θt0ω

)
> 0.

Therefore, by using (3.16), we also have that

Θ := lim
x→−∞

inf
t>0,t0∈R

u
(
t, x+C (t, θt0ω, µ) ;φ

µ
+ (0, ·; θt0ω) , θt0ω

)
> 0.

Since u ≤ 1, to prove the lemma, it is sufficient to check that Θ = 1. Indeed, we consider two

sequences {tn} ⊂ R and {xn} ⊂ R such that xn → −∞ as n→ ∞ and

lim
n→∞

u
(
tn, xn + C (tn, θt0ω, µ) ;φ

µ
+ (0, ·; θt0ω) , θt0ω

)
= Θ.
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We consider the sequence of functions
{
un = un(t, x, φ

µ
+ (0, ·; θt0ω) , θt0ω)

}
given for n ≥ 1 by

un(t, x, φ
µ
+ (0, ·; θt0ω) , θt0ω) = u(t+ tn, x+ xn + C (tn, θt0ω, µ) ;φ

µ
+ (0, ·; θt0ω) , θt0ω), (3.18)

with

C (tn, θt0ω, µ) =

∫ tn

0
c (τ, θt0ω, µ) dτ. (3.19)

It is clear that the sequence {un} is uniformly bounded in the Lipschitz norm on R2, therefore

there exists a subsequence such that for ω ∈ Ω0

un(t, x, φ
µ
+ (0, ·; θt0ω) , θt0ω) → u∞(t, x, φµ+ (0, ·; θt0ω) , θt0ω) locally uniformly for (t, x) ∈ R2,

and

u∞(0, 0, φµ+ (0, ·; θt0ω) , θt0ω) = Θ.

We now claim that

u∞(t, x, φµ+ (0, ·; θt0ω) , θt0ω) ≥ Θ,∀(t, z) ∈ R2, ω ∈ Ω0. (3.20)

Indeed, by (3.18) and (3.19), we have that

un(t, x, φ
µ
+ (0, ·; θt0ω) , θt0ω)

= u

(
t+ tn, x+ xn −

∫ t

0
c (tn + s, θt0ω, µ) ds+

∫ t+tn

0
c (s, θt0ω, µ) ds

)
.

Now, since one has locally uniformly for (t, x) ∈ R2, ω ∈ Ω0,

x+ xn −

∫ t

0
c (tn + s, θt0ω, µ) ds→ −∞,

it follows from the definition of Θ that (3.20) holds true.

Now we derive the equation satisfied by u∞. Since the function u
(
t, x;φµ+ (0, ·; θt0ω) , θt0ω

)

satisfies the following equation for all (t, x) ∈ R2,

ut =

∫

R

J(θtθt0ω, y)[u(t, x− y)− u(t, x)]dy + a (θtθt0ω)u(1− u),

we have that for any n ≥ 1 the function un satisfies the shifted equation

∂tun =

∫

R

J(θt+tnθt0ω, y)[un(t, x− y)− un(t, x)]dy + a (θt+tnθt0ω)un(1− un).

In order to obtain a suitable equation for u∞, we first investigate the shifted kernel function

(t, y) 7→ J(θt+tnθt0ω, y). Note that y 7→ J(·, y) ∈ L1 (R;L∞(Ω,F ,P)), then by applying Dunford-

Pettis theorem, we have that the sequence {(t, y) 7→ J(θt+tnθt0ω, y)} is relatively weakly compact

in L1((−T, T ) × R;L∞(Ω,F ,P)) for any T > 0. Therefore, there exist a subsequence and a

function J̄ = J̄(θtθt0ω, y) ∈ L1
loc (R× R;L∞(Ω,F ,P)) with

0 ≤ J̄(θtθt0ω, y) ≤ ‖J(·, y)‖L∞(R), a.e.(t, y) ∈ R2, ω ∈ Ω0
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and such that for all T > 0 and any ϕ ∈ L∞((−T, T )× R) the following convergence holds

lim
n→∞

∫ T

−T

∫

R

J (θt+tnθt0ω, y)ϕ(t, y)dtdy =

∫ T

−T

∫

R

J̄(θtθt0ω, y)ϕ(t, y)dtdy.

Taking ϕ(t, y) ≡ 1, we obtain that
∫

R

J (θt+tnθt0ω, y) dy →

∫

R

J̄(θtθt0ω, y)dy weakly in L1
loc(R), (3.21)

therefore

un(t, x)

∫

R

J (θt+tnθt0ω, y) dy → u∞(t, x)

∫

R

J̄(θtθt0ω, y)dy,

weakly in L1
loc (R) with respect to t and locally uniformly with respect to x ∈ R.

Applying the above convergence to the sequence of shifted kernels, we now claim

Claim 3.6. The following holds

lim
n→∞

∫

R

J (θt+tnθt0ω, y) un(t, x− y)dy =

∫

R

J̄(θtθt0ω, y)u∞(t, x− y)dy,

weakly L1
loc(R) with respect to t and locally uniformly with respect to x ∈ R. In other words, for

any T > 0 and any ψ ∈ L∞(−T, T ) one has

lim
n→∞

∫ T

−T

∫

R

ψ(t)J (θt+tnθt0ω, y) un(t, x− y)dtdy =

∫ T

−T

∫

R

ψ(t)J̄(θtθt0ω, y)u∞(t, x− y)dddy

locally uniformly with respect to x ∈ R.

Proof. It follows from (3.21) that

lim
n→∞

∫

R

J (θt+tnθt0ω, y) u∞(t, x− y)dy =

∫

R

J̄(θtθt0ω, y)u∞(t, x− y)dy, (3.22)

locally uniformly for x ∈ R and weakly in L1
loc(R) with respect to the t. It is clearly that for

any n one has
∫

R

J (θt+tnθt0ω, y) un(t, x− y)dy −

∫

R

J̄(θtθt0ω, y)u∞(t, x− y)dy

=

∫

R

J (θt+tnθt0ω, y) [un(t, x− y)− u∞(t, x− y)] dy

+

∫

R

[
J (θt+tnθt0ω, y)− J̄(θtθt0ω, y)

]
u∞(t, x− y)dy.

(3.23)

Since (3.22) and (3.23), in order to prove Claim 3.6 we only need to prove that
∫

R

J (θt+tnθt0ω, y) [un(t, x− y)− u∞(t, x− y)] dy → 0 as n→ ∞, (3.24)

locally uniformly for (t, x) ∈ R2. Note that for any B > 0 one has
∣∣∣∣
∫

R

J (θt+tnθt0ω, y) [un(t, x− y)− u∞(t, x− y)] dy

∣∣∣∣

≤

∫

|y|≤B

J (θt+tnθt0ω, y) |un(t, x− y)− u∞(t, x− y)| dy

+

∫

|y|≥B

J (θt+tnθt0ω, y) |un(t, x− y)− u∞(t, x− y)| dy.
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On the one hand, since 0 ≤ un ≤ 1 the above inequality implies that for all B > 0, any n and

any (t, x) ∈ R2 one has
∣∣∣∣
∫

R

J (θt+tnθt0ω, y) [un(t, x− y)− u∞(t, x− y)] dy

∣∣∣∣

≤

∫

R

‖J(·, y)‖L∞(R)dy sup
|y|≤B

|un(t, x− y)− u∞(t, x− y)|+ 2

∫

|y|≥B

‖J(·, y)‖L∞(R)dy.

On the other hand, since un(t, x) → u∞(t, x) locally uniformly for (t, x) ∈ R2, we obtain that

for each A > 0 and any B > 0

lim sup
n→∞

sup
(t,x)∈[−A,A]2

∣∣∣∣
∫

R

J (θt+tnθt0ω, y) [un(t, x− y)− u∞(t, x− y)] dy

∣∣∣∣

≤ 2

∫

|y|≥B

‖J(·, y)‖L∞(R)dy.

(3.25)

Finally since y 7→ ‖J(·, y)‖L∞(R) ∈ L1(R), letting B → ∞ ensures that (3.24) holds and this

completes the proof of Claim 3.6.

Next we consider the sequence of function hn(t, x, θt0ω) = a (θt+tnθt0ω) (1− un). By Assump-

tion (H1) and 0 ≤ un ≤ 1, we know that hn(t, x, θt0ω) is a bounded sequence in L∞
(
R2

)
. Then

up to a subsequence, one may assume that it converges for the weak-⋆ topology of L∞
(
R2

)
to

some function h∞ = h∞(t, x, θt0ω) ∈ L∞
(
R2

)
. Using Assumption (H1) again, the function h∞

satisfies

inf
t∈R

a (θtθt0ω) (1− u∞) ≤ h∞(t, x, ω) ≤ sup
t∈R

a (θtθt0ω) (1− u∞). (3.26)

As a consequence the Lipschitz continuous function u∞ satisfies the equation for a.e. (t, x) ∈ R2,

ω ∈ Ω0

∂tu∞(t, x) =

∫

R

J̄(θtθt0ω, y) [u∞(t, x− y)− u∞(t, x)] dy + u∞(t, x)h∞(t, x, ω),

together with 0 < Θ ≤ u∞(t, x) ≤ 1 for all (t, x) ∈ R2 and u∞(0, 0, φµ+ (0, ·; θt0ω) , θt0ω) = Θ.

Now let us complete the proof of the lemma by showing that Θ = 1. We consider the function

U = U(θtθt0ω) defined for t ≥ 0,t0 ∈ R and ω ∈ Ω0 by

U ′(θtθt0ω) = inf
t∈R

a (θtθt0ω) (1− U(θtθt0ω))U(θtθt0ω),∀t ≥ 0 and U(θt0ω) = Θ.

Then by using (3.26) and the comparison principle, we have that

U(θtθt0ω) ≤ u∞(s+ t, x) ≤ 1,∀t ≥ 0,∀s ∈ R,∀x ∈ R.

As a consequence, we obtain that

U(θtθt0ω) ≤ u∞(0, 0, φµ+ (0, ·; θt0ω) , θt0ω) = Θ ≤ 1,∀t ≥ 0.

Since Θ > 0, U(θtθt0ω) → 1 as t → ∞. This implies that Θ = 1 and completes the proof of the

lemma.

Now, we are ready to prove the Theorem 2.6.
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Proof of Theorem 2.6(1). First, let 0 < µ < µ̃ < min {2µ, µ∗} be fixed. It follows from (3.15)

and Proposition 3.4 that

u
(
t, x+ C(t;ω, µ);φ+µ , ω

)
< u

(
t̃, x+ C(t̃;ω, µ);φ+µ , ω

)
,

∀x ∈ R, t > t̃ > 0,∀ω ∈ Ω0.

Hence the following limit exits:

Uµ(x, ω) := lim
t→∞

u
(
t, x+ C (t; θ−tω, µ) ;φ

+
µ , θ−tω

)
, ∀x ∈ R, ω ∈ Ω0. (3.27)

It follows from Lemma 3.1 that

sup
t>0,t0∈R

u
(
t, x+ C (t, θt0ω, µ) ;φ

µ
+ (0, ·; θt0ω) , θt0ω

)
≤ e−µx → 0 as x→ ∞.

Therefore, we have that

lim
x→+∞

Uµ (x, θtω) = 0, uniformly in t ∈ R.

By the arguments of Lemma 3.5, we have that

lim
x→−∞

u
(
t, x+ C (t, θt0ω, µ) ;φ

µ
+ (0, ·; θt0ω) , θt0ω

)
= 1, uniformly in t > 0, t0 ∈ R, ω ∈ Ω0.

Therefore, we have that

lim
x→−∞

Uµ (x, θtω) = 1, uniformly in t ∈ R.

Next, using the fact

C (t+ τ ; θ−τω, µ) = C (τ ; θ−τω) + C(t;ω, µ),

we have that

u(t, x +C(t, ω, µ);Uµ(·, ω), ω)

= lim
τ→∞

u
(
t, x+ C(t, ω, µ);u

(
τ, x+ C (τ ; θ−τω, µ) ;φ

+
µ , θ−τω

)
, ω

)

= lim
τ→∞

u
(
t+ τ, x+ C(t, ω, µ) + C (τ ; θ−τω, µ) ;φ

+
µ , θ−τω

)

= lim
τ→∞

u
(
t+ τ, x+ C

(
t+ τ, θ−(t+τ)θtω, µ

)
;φ+µ , θ−(t+τ)θtω

)

= Uµ (x, θtω) .

It follows from (3.10) and Proposition 3.4 that

lim
x→∞

sup
t∈R

∣∣∣∣
Uµ (x, θtω)

φ
µ
+(x)

− 1

∣∣∣∣ = 0.

Furthermore, since the function R ∋ x 7→ φ
µ
+ is nonincreasing, then for every ω0 ∈ Ω and every

t > 0, we have that the function R ∋ x 7→ u
(
t, x+ C (t; θ−tω, µ) ;φ

µ
+, θ−tω

)
is decreasing, hence

so is Uµ(·, ω). This completes the proof of Theorem 2.6(1).
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Proof of Theorem 2.6(2). Note that u(t, x;ω) = Uµ
(
x− C(t;ω, µ), θtω

)
is a monotone random

transition wave solution of (1.1). We first claim that for a.e. ω ∈ Ω,

C(t+ s;ω, µ) = C(t;ω, µ) + C(s; θtω, µ), ∀s ≥ 0, t ∈ R. (3.28)

Indeed, since C(t;ω, µ) =
∫ t

0 c(s;ω, µ)ds and c(t;ω, µ) is defined in (2.10), we have that

∫ t+s

0
c(l;ω, µ)dl =

∫ t

0
c(l;ω, µ)dl +

∫ t+s

t

c(l;ω, µ)dl

=

∫ t

0
c(l;ω, µ)dl +

∫ s

0
c(l + t;ω, µ)dl.

(3.29)

Using (2.10) and

θl+tω = θlωθtω, ∀l, t ∈ R, ω ∈ Ω,

we have that ∫ s

0
c(l + t;ω, µ)dl =

∫ s

0
c(l; θtω, µ)dl. (3.30)

It follows from (3.29) and (3.30) that

∫ t+s

0
c(l;ω, µ)dl =

∫ t

0
c(l;ω, µ)dl +

∫ s

0
c(l; θtω, µ)dl.

This implies that (3.28) holds. Then, applying (3.28) and subadditive ergodic theorem, there is

c∗ such that for a.e. ω ∈ Ω, there holds

lim
t→∞

C(t;ω, µ)

t
= c∗.

Now, let Q be the set of rational numbers. Note that Uµ(·, ω) ∈ Cb
unif (R×Ω;R) is measurable

in ω and Uµ(x, ω) is bounded in x and ω. Using Lemma 2.5, there is Ω1 ∈ F with P (Ω1) = 1 such

that limt→∞
1
t

∫ t

0 U
µ (x, θsω) ds exists for all x ∈ Q and ω ∈ Ω1. Note that U

µ(x, ω) is uniformly

continuous in x. This implies that for all x ∈ R and ω ∈ Ω1, the limit limt→∞
1
t

∫ t

0 U
µ (x, θsω) ds

exists. Let

Uµ
∗ (x) = lim

t→∞

1

t

∫ t

0
Uµ (x, θsω) ds

for x ∈ R and ω ∈ Ω1. We have Uµ
∗ ∈ Cb

unif (R;R) and U
µ
∗ is monotone.

Remark 3.7. Define C ⊂ L∞(Ω,F ,P) the set of admissible speed function, that is the set of the

functions C(t;ω, µ) ∈ L∞(Ω,F ,P) such that there exists a random transition front, according to

Definition 1.2, with the speed function C(t;ω, µ) and c(t;ω, µ) = C ′(t;ω, µ). The above theorem

ensures that

{t 7→ c(t;ω, µ), µ ∈ (0, µ∗)} ⊂ C .

Therefore, recalling the definition of c(t;ω, µ) in (2.10) and Proposition 2.3 (iv), we obtain that

(
lim
µ→µ∗

⌊c(t;ω, µ)⌋,∞

)
⊂ ⌊C ⌋ := {⌊c⌋, c ∈ C }.
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4 Stability of a random transition front

In this subsection, we study the stability of random transition fronts of (1.1). Before we prove

the main Theorem 2.7, we first give the following lemma.

Lemma 4.1. Let u0 ∈ Cb
unif (R) satisfy (2.14). Then for any ω ∈ Ω0, there holds

lim
x→∞

u (t, x+ C(t;ω, µ);u0, ω)

e−µx
= 1 uniformly in t ≥ 0,

where C(t;ω, µ) =
∫ t

0 c(s;ω, µ)ds
(
c(t, ω, µ) := µ−1

[∫
R
J(θtω, y) (e

µy − 1) dy + a(θtω)
])

and µ is

given by Theorem 2.7.

Proof. Since u0 satisfies (2.14), then for every ε > 0, there is xε;ω ≫ 1 such that

1− ε ≤
u0(x+ C(0;ω, µ))

U(x, ω)
≤ 1 + ε, ∀x ≥ xε;ω.

Let Aω(t) be as in Lemma 3.2. Since e−µx − dωe
Aω(t)−µ̃x ≤ U(x, t) ≤ e−µx, then

(1− ε)e−µx − (1− ε)dωe
Aω(0)−µ̃x ≤ u0(x+ C(0;ω, µ)) ≤ (1 + ε)e−µx, ∀x ≥ xε;ω. (4.1)

We claim that there is d≫ 1 such that

(1− ε)e−µx − deAω(0)−µ̃x ≤ u0(x+ C(0;ω, µ)) ≤ (1 + ε)e−µx + deAω(0)−µ̃x, ∀x ∈ R. (4.2)

Indeed, we observe that

u0(x+ C(0;ω, µ)) ≤ ‖u0‖∞ eµ̃xε,ωe−µ̃xε;ω ≤ ‖u0‖∞ eµ̃xε;ω+|Aω(0)|eAω(0)−µ̃x.

Therefore,

u0(x+ C(0;ω, µ)) ≤ (1 + ε)e−µx + dε,ωe
Aω(0)−µ̃x, ∀x ∈ R, (4.3)

where dε;ω =: ‖u0‖∞ eµ̃xε;ω+|Aω(0)|. On the other hand, for every d > 1, the function R ∋ x 7→

(1− ε)e−µx − deAω(0)−µ̃x reaches its maximum value at xd =
ln
(

dµ̃εωAω(0)
(1−ε)µ

)

µ̃−µ
. It is clearly that

lim
d→∞

xd = ∞, (4.4)

and

lim
d→∞

(
(1− ε)e−µxd − deAω(0)−µ̃xd

)
= 0. (4.5)

Therefore, there is d̃ε;ω ≫ (1− ε)dω such that xdε;ω ≥ xε;ω and

(1− ε)e−µxdε ;ω − d̃ε;ωe
Aω(0)−µ̃x

d̃ε;ω ≤ inf
x≤xε;ω

u0(x+C(0;ω, µ)). (4.6)

It follows from (4.1) and (4.6) that

(1− ε)e−µx − deAω(0)−µ̃x ≤ u0(x+ C(0;ω, µ)), ∀x ∈ R, ∀d ≥ d̃ε;ω. (4.7)
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Therefore, by using (4.3) and (4.7), we have that (4.2) holds for every d ≥ max
{
d̃ε;ω, dε;ω

}
. By

direct computation as in the proof of Lemma 3.2, it holds that for d≫ 1,

Gω,µ
(
(1− ε)e−µx − deAω(t)−µ̃x

)
≤ 0, a.e. in t

on the set Dε :=
{
(x, t) ∈ R× R+ | (1− ε)e−µx − deAω(t)−µ̃x ≥ 0

}
. Therefore, by using

u (t, x+ C(t;ω, µ);u0, ω) ≥ 0,

and comparison principle, we have that

(1− ε)e−µx − deAω(t)−µ̃x ≤ u (t, x+ C(t;ω, µ);u0, ω) , ∀x ∈ R, ∀t ≥ 0, d≫ 1. (4.8)

Similarly, we also have that

Gω,µ
(
(1 + ε)e−µx + deAω(t)−µ̃x

)
≥ 0, x ∈ R, t ∈ R.

Then, it follows from comparison principle that

u (t, x+ C(t;ω, µ);u0, ω) ≤ (1 + ε)e−µx + deAω(t)−µ̃x, ∀x ∈ R,∀t ≥ 0, d≫ 1. (4.9)

By using (4.8), (4.9) and arbitrariness of ε > 0, we have that

lim
x→∞

u (t, x+C(t;ω, µ);u0, ω)

e−µx
= 1 uniformly in t ≥ 0.

Therefore, we complete the proof of Lemma 4.1.

Now we are ready to prove the Theorem 2.7.

Proof of Theorem 2.7. Fix ω ∈ Ω0. Let u0 ∈ Cb
unif (R) satisfying (2.14). Then there exists α ≥ 1

such that
1

α
≤

u0(x)

U(x− C(0;ω, µ), ω)
≤ α, ∀x ∈ R. (4.10)

Therefore, by comparison principle, we have that

u (t, x;u0, ω) ≤ u(t, x;αU(· − C(0;ω, µ), ω)), ∀x ∈ R, ∀t ≥ 0,

and

U (x− C(t;ω, µ), θtω) ≤ u (t, x;αu0, ω) , ∀x ∈ R, ∀t ≥ 0.

It is clearly that

(αu)t ≥ α

∫

R

J(θtω, y)[u(t, x− y)− u(t, x)]dy + a (θtω) (αu)(1 − αu). (4.11)

Then by comparison principle, we have that

U (x− C(t;ω, µ), θtω) ≤ αu (t, x;u0, ω) , ∀t ≥ 0. (4.12)
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Similarly, we have that

u (t, x;u0, ω) ≤ αU (x− C(t;ω, µ), θtω) , ∀t ≥ 0. (4.13)

Therefore, ∀t ≥ 0, there exists a unique α(t) ≥ 1 satisfying

α(t) := inf

{
α ≥ 1 |

1

α
≤

u (t, x;u0, ω)

U (x− C(t;ω, µ), θtω)
≤ α,∀x ∈ R

}
. (4.14)

Moreover, we have that

α(t) ≤ α(τ), ∀0 ≤ τ ≤ t. (4.15)

Indeed, by using (4.10), we define

α(0) = inf

{
α ≥ 1 |

1

α
≤

u0(x)

U(x− C(0;ω, µ), ω)
≤ α, ∀x ∈ R

}
.

It follows from (4.12) and (4.13) that

1

α(0)
≤

u (t, x;u0, ω)

U (x− C(t;ω, µ), θtω)
≤ α(0),∀t > 0, x ∈ R. (4.16)

This inequality is similar to (4.10), thus α(t) given by (4.14) is well defined for all t > 0.

Moreover, since (4.16) holds ∀t > 0, then

α(t) ≤ α(0),∀t > 0. (4.17)

We now fix 0 < τ < t. Using the definition of α(τ), we have that

1

α(τ)
≤

u (τ, x;u0, ω)

U (x− C(τ ;ω, µ), θτω)
≤ α(τ),∀x ∈ R. (4.18)

Let τ be the initial time, we replace u0(x) and U(x − C(0;ω, µ), ω) by u (τ, x;u0, ω) and

U (x− C(τ ;ω, µ), θτω) in the arguments (4.10)–(4.13), respectively. Similar to the derivation of

(4.17), we have

α(t) ≤ α(τ),∀t > τ. (4.19)

Using (4.17) and (4.19), we have that (4.15) holds. Therefore, we can define α∞ as follows

α∞ := inf{α(t) | t ≥ 0} = lim
t→∞

α(t).

To complete the proof of Theorem 2.7, it is only to show that α∞ = 1. It is clear that

α∞ ≥ 1.

We assume by contradiction that α∞ > 1. Let 1 < α < α∞ be fixed. It follows from Lemma 4.1

that there exists xα ≫ 1 such that

1

α
≤
u (t, x+ C(t;ω, µ);u0, ω)

U (x, θtω)
≤ α, ∀x ≥ xα,∀t ≥ 0. (4.20)

Set

mα :=
1

α0
inf

t≥0,x≤xα

U (x; θtω) > 0,
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where α0 = α(0) = supt≥0 α(t). Hence it follows from the definition of α0 that

mα ≤ min {u (t, x+ C(t;ω, µ);u0, ω) , U (x, θtω)} , ∀x ≤ xα,∀t ≥ 0.

By using Assumption (H2), we have that there exists T = T (ω) ≥ 1 such that

0 <
⌊a⌋T

2
<

∫ s+T

s

a (θτω) ds < 2⌈a⌉T <∞, ∀s ∈ R. (4.21)

Let 0 < δ ≪ 1 satisfy

α < e−2δT ⌈a⌉α∞ and
(
(α∞ − 1)− α0

(
1− e−2δT ⌈a⌉

))
mα > δ. (4.22)

We claim that

α((k + 1)T ) ≤ e−δ
∫ (k+1)T
kT

a(θsω)dsα(kT ), ∀k ≥ 0. (4.23)

Indeed, we take

uk(t, x) = eδ
∫ t+kT

kT
a(θsω)dsu (t+ kT, x+ C(t+ kT ;ω, µ);u0, ω) , Uk(t, x) = U (x; θt+kTω) ,

(4.24)

and

ak(t) = a (θt+kTω) , αk = α(kT ), Jk(t, y) = J(θt+kTω, y). (4.25)

On the one hand, it follows from (4.21), (4.24) and (4.25) that for any t ∈ (0, T ), x ∈ R, and

k ≥ 0

∂tuk = δak(t)uk +

∫

R

Jk(t, y)[uk(t, x− y)− uk(t, x)]dy +

∫
R
Jk(t, y) (e

µy − 1) dy + ak(t)

µ
∂xuk

+ ak(t) (1− u (t+ kT, x+ C(t+ kT ;ω, µ);u0, ω)) uk

=

∫

R

Jk(t, y)[uk(t, x− y)− uk(t, x)]dy +

∫
R
Jk(t, y) (e

µy − 1) dy + ak(t)

µ
∂xuk

+ ak(t) (1− uk)uk + ak(t)
((

1− e−δ
∫ t+kT
k

a(θsω)ds
)
uk + δ

)
uk

≤

∫

R

Jk(t, y)[uk(t, x− y)− uk(t, x)]dy +

∫
R
Jk(t, y) (e

µy − 1) dy + ak(t)

µ
∂xuk

+ ak(t) (1− uk)uk + ak(t)
((

1− e−2δt⌈a⌉
)
uk + δ

)
uk.

(4.26)

On the other hand, it follows from (4.22) and the fact α∞ ≤ αk ≤ α0 that for x ≤ xα, 0 ≤ t ≤ T
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and k ≥ 0

∂t (αkUk)− αk

∫

R

Jk(t, y)[Uk(t, x− y)− Uk(t, x)]dy −

∫
R
Jk(t, y) (e

µy − 1) dy + ak(t)

µ
∂x (αkUk)

=ak(t) (1− Uk) (αkUk)

=ak(t) (1− (αkUk)) (αkUk) + ak(t)
((

1− e−2δT ⌈a⌉
)
(αkUk) + δ

)
(αkUk)

+ ak(t)
((

(αk − 1)−
(
1− e−2δT ⌈a⌉

)
αk

)
Uk − δ

)
(αkUk)

≥ak(t) (1− (αkUk)) (αkUk) + ak(t)
((

1− e−2δT ⌈a⌉
)
(αkUk) + δ

)
(αkUk)

+ ak(t)
((

(α∞ − 1)−
(
1− e−2δT ⌈a⌉

)
α0

)
mα − δ

)
(αkUk)

≥ak(t) (1− (αkUk)) (αkUk) + ak(t)
((

1− e−2δT ⌈a⌉
)
(αkUk) + δ

)
(αkUk) .

(4.27)

Using (4.22), we have that

eδ
∫ (k+1)T
kT

a(θsω)dsα ≤ α∞ ≤ αk. (4.28)

Therefore, it follows from the definition of αk, (4.20), (4.28) and comparison principle for equa-

tions that

eδ
∫ t+kT
kT

a(θsω)dsu (t+ kT, x+ C (t+ kT ;u0, ω) ≤ αkU (x, θt+kTω) ,

∀x ≤ xα, t ∈ [0, T ], k ≥ 0.

That is

u (t+ kT, x+ C(t+ kT ;ω);u0) ≤ e−δ
∫ (k+t)T
kT

a(θsω)dsαkU (x, θt+kTω) ,

∀x ≤ xα, t ∈ [0, T ], k ≥ 0.

By (4.28), we have that

α ≤ e−δ
∫ (k+1)T
kT

a(θsω)dsα∞ ≤ e−δ
∫ (k+1)T
kT

a(θsω)dsαk. (4.29)

Therefore, it follows from (4.20) and (4.29) that

u (t+ kT, x+ C(t+ kT ;ω);u0, ω) ≤ e−δ
∫ t+kT

kT
a(θsω)dsαkU (x, θt+kTω) ,

∀x ≥ xα, t ∈ [0, T ], k ≥ 0.

Therefore, for every k ≥ 1, it holds that

u (t+ kT, x+C (t+ kT ;u0, ω) ;u0, ω) ≤ e−δ
∫ t+kT
kT

a(θsω)dsαkU (x, θt+kTω) ,∀x ∈ R, t ∈ [0, T ].

(4.30)

Similarly, interchanging uk and Uk in (4.26) and (4.27), we obtain that

U (x, θt+kTω) ≤ e−δ
∫ t+kT

kT
a(θsω)dsαku (t+ kT, x+C (t+ kT ;u0, ω) ;u0, ω) ,∀x ∈ R, t ∈ [0, T ].

(4.31)
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Hence inequality (4.23) follows from (4.14), (4.30) and (4.31). Thus, by induction we obtain

that

α∞ ≤ α((k + 1)T ) ≤ e−δ
∑k

i=0

∫ (i+1)T
iT a(θsω)dsα(0) = e−δ

∫ (k+1)T
0

a(θsω)dsα0, ∀k ≥ 0. (4.32)

But for ω ∈ Ω0, it holds that
∫∞
0 a (θsω) ds = ∞. Therefore, letting k → ∞ in (4.32), we obtain

that

α∞ ≤ 0,

which is impossible because α∞ ≥ 1. Therefore α∞ = 1, which completes the proof of the

theorem.
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