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A B S T R A C T

This paper explores a ratio-dependent Holling–Tanner predator–prey system with nonlocal
diffusion, wherein the prey is subject to strong Allee effect. To be specific, by using Schauder’s
fixed point theorem and iterative technique, we establish a theoretical framework regarding
the existence of traveling waves. We meticulously construct upper and lower solutions and a
novel sequence, and employ the squeeze method to validate the existence of traveling waves
for 𝑐 > 𝑐∗. Additionally, by spreading speed theory and the comparison principle, we confirm
the existence of traveling wave with 𝑐 = 𝑐∗. Finally, we investigate the nonexistence of traveling
waves for 𝑐 < 𝑐∗, and conclusively determine the minimal wave speed.

. Introduction

Predation, as one of the fundamental interactions in nature, plays a significant role in shaping ecosystems. However, the classical
otka–Volterra predator–prey system might be inadequate for depicting the dynamics of ecological systems, as populations in reality
ace limiting factors like resource competition and diseases, which are not fully considered in such a model. In addition, predators
an adjust their hunting strategies according to the changes in both the density and availability of the prey. Various ecological
actors also influence the dynamics between the predator and the prey, such as habitat fragmentation, climate change and human
ctivities. Hence, many scholars have dedicated themselves to investigating the complex ecological phenomena in predator–prey
ystems, seeing [1–3].

Predator-prey reaction–diffusion systems are motivated from the spatial heterogeneity observed in natural habitats. The
olling–Tanner system with Holling-II type functional response

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝑑1𝛥𝑢 + 𝑢 (1 − 𝑢) − 𝑎𝑢𝑣
1 + 𝑢 ,

𝑣𝑡 = 𝑑2𝛥𝑣 + 𝑠𝑣
(

1 − 𝑣
𝑢

)
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Nonlinear Analysis: Real World Applications 84 (2025) 104327 
has recently attracted increasing interest [4,5]. According to [6], the ratio-dependent Holling–Tanner system provides a way to avoid
he ‘‘biological control paradox’’ wherein classical prey-dependent exploitation models generally fail to achieve a low and stable pest
rey equilibrium density. Aligning with perspectives presented in [7,8], the functional responses on ecological timescales should

depend on both prey and predator densities, with an emphasis on their ratio. Hence, the authors in [7] proposed a ratio-dependent
functional response

𝑓
( 𝑢
𝑣

)

=
𝑚
( 𝑢
𝑣

)

( 𝑢
𝑣

)

+ 𝑎
= 𝑚𝑢
𝑢 + 𝑎𝑣

,

and the corresponding Holling–Tanner system is studied in [9]. Traveling waves of the Holling–Tanner system have been further
studied to refine the understanding of population propagation dynamics, we refer readers to [10–16] for local diffusion systems,
nd [17,18] for nonlocal diffusion systems.

In the aforementioned Holling–Tanner systems, traveling waves are considered when the growth of the prey is modeled by a
logistic growth pattern. The Allee effect has garnered widespread attention in recent years owing to its complex nature and practical
ignificance [19–22], it refers to reduced fitness or decline in population growth at low population densities, this scenario poses

challenges in finding mates, resulting in declining birth rates and increasing the risk of extinction [23]. This phenomenon can be
ategorized into two types: weak Allee effect and strong Allee effect [24,25]. The former refers to a scenario where the population

has a positive and increasing growth when the size of the population is below a certain threshold value, and the latter pertains to
 situation where growth is negative when the size of the population is below a certain threshold value.

When the prey is affected by the Allee effect, the main challenge lies in skillfully constructing appropriate upper and lower
solutions to establish the existence of traveling waves. Recently, Zhao and Wu in [14] investigated the existence of traveling waves
of the Holling–Tanner system with Lotka–Volterra functional response and strong Allee effect

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝑑1𝛥𝑢 + 𝑢 (1 − 𝑢)
( 𝑢
𝑏
− 1

)

− 𝑎𝑢𝑣,

𝑣𝑡 = 𝑑2𝛥𝑣 + 𝑠𝑣
(

1 − 𝑣
𝑢

)

.
(1)

To the best of the authors’ knowledge, there has been limited research into the existence of traveling waves of the ratio-dependent
olling–Tanner systems with nonlocal diffusion and strong Allee effect. Consequently, this work investigates the following system

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝑑11[𝑢](𝑥, 𝑡) + 𝑢 (1 − 𝑢)
( 𝑢
𝑏
− 1

)

− 𝑚𝑢𝑣
𝑢 + 𝑎𝑣

,

𝑣𝑡 = 𝑑22[𝑣](𝑥, 𝑡) + 𝑠𝑣
(

1 − 𝑣
𝑢

)

,
(2)

where 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) stand for the population densities of the prey and the predator, respectively. 𝑑1 and 𝑑2 are the diffusion
oefficients of the prey and the predator; 𝑏 ∈ (0, 1) represents the Allee threshold value; 𝑚 is a measure of the quality of the prey as
ood for the predator; 𝑎 and 𝑠 denote the saturation rate of the predator and a measure of the growth rate of the predator. And all
arameters are positive. Moreover, 𝑖[𝑤](𝑥, 𝑡), 𝑖 = 1, 2, formulate the spatial nonlocal diffusion of individuals

𝑖[𝑤](𝑥, 𝑡) = ∫R
𝐽𝑖(𝑥 − 𝑦)𝑤(𝑦, 𝑡)𝑑 𝑦 −𝑤(𝑥, 𝑡),

where the kernel functions 𝐽𝑖 ∶ R → R, 𝑖 = 1, 2, satisfy

(J1) 𝐽𝑖 ∈ 𝐶1(R), 𝐽𝑖(𝑥) = 𝐽𝑖(−𝑥) ≥ 0 and ∫R 𝐽𝑖(𝑥)𝑑 𝑥 = 1.

(J2) 𝐽𝑖 satisfy the decay bounds:

∫R
𝐽𝑖(𝑥)𝑒𝜆𝑥𝑑 𝑥 < +∞ for any 𝜆 ∈ (0, 𝜆0) and lim

𝜆→𝜆0 ∫R
𝐽𝑖(𝑥)𝑒𝜆𝑥𝑑 𝑥 = +∞

for some 𝜆0 ∈ (0,+∞] and ∫R |𝐽 ′
𝑖 (𝑥)|𝑑 𝑥 < +∞.

Let us consider (3) without diffusion, that is
⎧

⎪

⎨

⎪

⎩

𝑢′(𝑡) = 𝑢(1 − 𝑢)
( 𝑢
𝑏
− 1

)

− 𝑚𝑢𝑣
𝑢 + 𝑎𝑣

,

𝑣′(𝑡) = 𝑠𝑣
(

1 − 𝑣
𝑢

)

.
(3)

Obviously, (𝑏, 0) and (1, 0) are nonnegative equilibria of (3). Denote

𝑏1 = 1 + 2𝑚
1 + 𝑎 − 2

√

𝑚
1 + 𝑎

(

1 + 𝑚
1 + 𝑎

)

.

It is simple to check that 𝑏1 ∈ (0, 1) and

(1) if 0 < 𝑏 < 𝑏 , then (3) has two positive equilibria (𝑢∗, 𝑢∗) and (𝑢∗, 𝑢∗) with 𝑢∗ < 𝑢∗ < 1,
1 1 1 2 2 1 2

2 



H. Li et al. Nonlinear Analysis: Real World Applications 84 (2025) 104327 
(2) if 𝑏 = 𝑏1, then (3) has a unique positive equilibrium ((1 + 𝑏1)∕2, (1 + 𝑏1)∕2),

(3) if 𝑏1 < 𝑏 < 1, then (3) has no positive equilibrium,

where

𝑢∗1 = 1
2

(

𝑏 + 1 −
√

𝑏2 − 2
(

1 + 2𝑚
1 + 𝑎

)

𝑏 + 1
)

,

𝑢∗2 = 1
2

(

𝑏 + 1 +
√

𝑏2 − 2
(

1 + 2𝑚
1 + 𝑎

)

𝑏 + 1
)

.

Our primary goal is to establish the existence of traveling waves connecting the predator-free state and the coexistence state in
(2). Let us first assume 0 < 𝑏 < 𝑏1, which is equivalent to 4𝑚𝑏 < (1 − 𝑏)2(1 + 𝑎) for 𝑏 ∈ (0, 1). Referencing [26], at this point, the
positive equilibrium (𝑢∗1 , 𝑢∗1) is always unstable, whereas (𝑢∗2 , 𝑢∗2) can be stable under certain conditions. Therefore, our attention is
directed towards identifying traveling waves connecting (1, 0) and (𝑢∗2 , 𝑢∗2). In what follows, it will be convenient to use the following
notations

𝑓 (𝜙, 𝜓) = (1 − 𝜙)
(

𝜙
𝑏
− 1

)

−
𝑚𝜓

𝜙 + 𝑎𝜓
, 𝑔(𝜙, 𝜓) = 𝑠

(

1 − 𝜓
𝜙

)

.

A positive solution is called a traveling wave, if it has the form

(𝑢, 𝑣)(𝑥, 𝑡) = (𝜙, 𝜓)(𝜉), 𝜉 = 𝑥 + 𝑐 𝑡,
where 𝑐 > 0 is the wave speed. Then (𝜙, 𝜓)(𝜉) satisfies

{

𝑐 𝜙′(𝜉) = 𝑑11[𝜙](𝜉) + 𝜙(𝜉)𝑓 (𝜙, 𝜓)(𝜉),
𝑐 𝜓 ′(𝜉) = 𝑑22[𝜓](𝜉) + 𝜓(𝜉)𝑔(𝜙, 𝜓)(𝜉),

(4)

where

𝑖 [𝑤] (𝜉) = ∫R
𝐽𝑖(𝜉 − 𝑦)𝑤(𝑦)𝑑 𝑦 −𝑤(𝜉), 𝑖 = 1, 2.

If (𝜙, 𝜓)(𝜉) further meets the boundary conditions

(𝜙, 𝜓)(−∞) = (1, 0) and (𝜙, 𝜓)(+∞) = (𝑢∗2 , 𝑢∗2), (5)

then it is called a traveling wave connecting (1, 0) and (𝑢∗2 , 𝑢∗2), also named a invasion wave [27]. Therefore, establishing the existence
of traveling waves of (2) is precisely equivalent to demonstrating the existence of the positive solutions of the boundary value
problem (4)–(5).

In order to describe our main results, let

𝛥(𝜆, 𝑐) = 𝑑2

(

∫R
𝐽2(𝑦)𝑒−𝜆𝑦𝑑 𝑦 − 1

)

− 𝑐 𝜆 + 𝑠.

Through a straightforward calculation, it is easy to get
𝛥(0, 𝑐) = 𝑠 > 0 and lim𝜆→+∞ 𝛥(𝜆, 𝑐) = +∞ for all 𝑐 ,
𝜕 𝛥(𝜆, 𝑐)
𝜕 𝑐 = −𝜆 < 0 and lim

𝑐→+∞
𝛥(𝜆, 𝑐) = −∞ for 𝜆 > 0,

𝜕 𝛥(𝜆, 𝑐)
𝜕 𝜆

|

|

|

|𝜆=0
= −𝑐 < 0 for all 𝑐 > 0,

𝜕2𝛥(𝜆, 𝑐)
𝜕 𝜆2 = 𝑑2 ∫R

𝐽2(𝑦)𝑦2𝑒−𝜆𝑦𝑑 𝑦 > 0 for all 𝜆 and 𝑐 .

Thus, we have the following properties.

Lemma 1.1. There exists a positive constant

𝑐∗ = inf
𝜆>0

{

1
𝜆

[

𝑑2

(

∫R
𝐽2(𝑦)𝑒−𝜆𝑦𝑑 𝑦 − 1

)

+ 𝑠
]}

(6)

such that the following assertions hold.

(a) If 0 < 𝑐 < 𝑐∗, then 𝛥(𝜆, 𝑐) > 0 for 𝜆 > 0.

(b) If 𝑐 > 𝑐∗, then 𝛥(𝜆, 𝑐) = 0 has two positive real roots 𝜆1 < 𝜆2, and 𝛥(⋅, 𝑐) < 0 in (𝜆1, 𝜆2) and 𝛥(⋅, 𝑐) > 0 in (0, 𝜆1) ∪ (𝜆2,+∞).

(c) If 𝑐 = 𝑐∗, then there exists 𝜆∗ > 0 such that 𝛥 (𝜆∗, 𝑐∗) = 0 and 𝛥 (𝜆, 𝑐∗) > 0 for 𝜆 ≠ 𝜆∗.

Now, our major result is as follows.
3 
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Theorem 1.1. Assume that (J1)-(J2) hold. If 𝑏 ∈ (0, 1) and

𝑚 < min

⎧

⎪

⎨

⎪

⎩

(1 − 𝑏)2(1 + 𝑏)
8𝑏

,
(1 − 𝑏)2(1 + 𝑎)

4𝑏
,
(1 + 𝑎)3

8

⎛

⎜

⎜

⎝

√

𝑏2 + 4
( 1 − 𝑏
1 + 𝑎

)2
− 𝑏

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, (7)

then (2) has traveling waves connecting (1, 0) and (𝑢∗2 , 𝑢∗2) for 𝑐 ≥ 𝑐∗. While (2) has no traveling waves connecting (1, 0) and (𝑢∗2 , 𝑢∗2) for
0 < 𝑐 < 𝑐∗.

Notably, our approach is also adaptable to the Holling–Tanner system with local diffusion and strong Allee effect, and results
about spreading speed and the comparison principle are detailed in [28,29]. Regarding (1), the existence of traveling wave with
the wave speed 𝑐 = 𝑐∗ is proved via a limiting argument similar to Theorem 4.1 in [30], however, this procedure is omitted due to
ts complexity. In its place, we adopt an entirely different approach with [14], and offer a complete proof.

This paper is organized as follows. In Section 2, we present a theoretical framework for the existence of the positive solution of
(4). Section 3 is dedicated to establishing the existence of a positive solution of (4)–(5) by constructing upper and lower solutions
and a novel sequence for 𝑐 > 𝑐∗. In Section 4, we rigorously validate the case 𝑐 = 𝑐∗ by spreading speed theory and the comparison
principle, and also deduce the nonexistence of the positive solution of (4)–(5), conclusively determining the minimal wave speed.
n the final appendix section, we mention some crucial results used in this paper.

2. A general result

In this section, by Schauder’s fixed point theorem and upper and lower solutions method, we reframe the quest to find a positive
olution of (4) into an existence problem concerning a pair of upper and lower solutions. To begin, we define

𝑋𝑏 =
{

(𝜙, 𝜓) ∈ 𝐶
(

R,R2) ∶ (1 + 𝑏)∕2 ≤ 𝜙 ≤ 1 and 0 ≤ 𝜓 ≤ 1
}

,

and introduce upper and lower solutions.

Definition 2.1. Function pairs
(

𝜙, 𝜓
)

and
(

𝜙, 𝜓
)

in 𝑋𝑏 are upper solution and lower solution of (4) if they satisfy

(a) 𝜙(𝜉) ≤ 𝜙(𝜉), 𝜓(𝜉) ≤ 𝜓(𝜉) for 𝜉 ∈ R;

(b) there exists a finite set 𝐸 =
{

𝜉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚
}

such that for 𝜉 ∈ R∖𝐸

𝑑11

[

𝜙
]

(𝜉) − 𝑐𝜙′
(𝜉) + 𝜙(𝜉)𝑓

(

𝜙, 𝜓
)

(𝜉) ≤ 0, (8)

𝑑11

[

𝜙
]

(𝜉) − 𝑐 𝜙′(𝜉) + 𝜙(𝜉)𝑓
(

𝜙, 𝜓
)

(𝜉) ≥ 0, (9)

𝑑22
[

𝜓
]

(𝜉) − 𝑐𝜓 ′(𝜉) + 𝜓(𝜉)𝑔
(

𝜙, 𝜓
)

(𝜉) ≤ 0, (10)

𝑑22

[

𝜓
]

(𝜉) − 𝑐 𝜓 ′(𝜉) + 𝜓(𝜉)𝑔
(

𝜙, 𝜓
)

(𝜉) ≥ 0. (11)

Following this, we consider the nonlinear operators 𝐹1 and 𝐹2 on 𝑋𝑏 defined by

𝐹1(𝜙, 𝜓)(𝜉) ∶ = 𝛽 𝜙(𝜉) + 𝑑11[𝜙](𝜉) + 𝜙(𝜉)𝑓 (𝜙, 𝜓) (𝜉),
𝐹2(𝜙, 𝜓)(𝜉) ∶ = 𝛽 𝜓(𝜉) + 𝑑22[𝜓](𝜉) + 𝜓(𝜉)𝑔 (𝜙, 𝜓) (𝜉),

where the positive constant 𝛽 is large enough, ensuring that 𝐹1(𝜙, 𝜓) increases in 𝜙 and decreases in 𝜓 , while 𝐹2(𝜙, 𝜓) increases in
oth 𝜙 and 𝜓 for (𝜙, 𝜓)(𝜉) ∈ 𝑋𝑏, respectively. We also define the operators 𝑃𝑖, 𝑖 = 1, 2 as follows

𝑃𝑖(𝜙, 𝜓)(𝜉) = 1
𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐 𝐹𝑖(𝜙, 𝜓)(𝑦)𝑑 𝑦, 𝜉 ∈ R.

Set 𝑃 = (𝑃1, 𝑃2), clearly, 𝑃 ∶ 𝑋𝑏 → 𝐶
(

R,R2), and if (𝜙̂, 𝜓̂) = 𝑃 (𝜙̂, 𝜓̂), then (𝜙̂, 𝜓̂) solves
{

𝑐𝜙̂′(𝜉) = −𝛽𝜙̂(𝜉) + 𝐹1(𝜙̂, 𝜓̂)(𝜉),
𝑐 ̂𝜓 ′(𝜉) = −𝛽 ̂𝜓(𝜉) + 𝐹2(𝜙̂, 𝜓̂)(𝜉).

Hence the fixed point of 𝑃 is a solution of (4). Therefore, it remains to show that 𝑃 has a fixed point in 𝑋𝑏. To proceed, we select
a constant 𝜇 ∈ (0, 𝛽∕𝑐) and define the space

𝐵𝜇(R,R2) ∶=
{

(𝜙, 𝜓) ∈ 𝑋𝑏 ∶ |(𝜙, 𝜓)|𝜇 = sup
𝜉∈R

{max (|𝜙(𝜉)|, |𝜓(𝜉)|)} 𝑒−𝜇|𝜉| < +∞

}

.

Then
(

𝐵𝜇(R,R2), | ⋅ |𝜇
)

is a Banach space from [31]. By applying Schauder’s fixed point theorem, we will seek a positive solution of
(4) in set

{ }
𝛴 = (𝜙, 𝜓) ∈ 𝑋𝑏 ∶ 𝜙 ≤ 𝜙 ≤ 𝜙, 𝜓 ≤ 𝜓 ≤ 𝜓 ,

4 
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which is a non-empty convex, closed and bounded set in (𝐵𝜇(R,R2), | ⋅ |𝜇).
Firstly, we show that 𝑃 (𝛴) ⊆ 𝛴. For (𝜙, 𝜓) ∈ 𝛴, since (𝜙, 𝜓),

(

𝜙, 𝜓
)

and
(

𝜙, 𝜓
)

all belong to 𝑋𝑏, we have

𝐹1(𝜙, 𝜓)(𝜉) ≥ 𝐹1(𝜙, 𝜓)(𝜉) ≥ 𝐹1(𝜙, 𝜓)(𝜉)

by the choice of 𝛽. We assert that

𝜙(𝜉) ≤ 𝑃1(𝜙, 𝜓)(𝜉) ≤ 𝜙(𝜉).

Assume that −∞ ∶= 𝜉𝑚+1 < 𝜉𝑚 < 𝜉𝑚−1 <⋯ < 𝜉1 < 𝜉0 ∶= +∞ in set 𝐸 of Definition 2.1, and that for 𝜉𝑖 ∈ 𝐸

𝜙′(𝜉−𝑖 ) ≤ 𝜙′(𝜉+𝑖 ), 𝜙
′
(𝜉+𝑖 ) ≤ 𝜙

′
(𝜉−𝑖 ), 𝜓 ′(𝜉−𝑖 ) ≤ 𝜓 ′(𝜉+𝑖 ), 𝜓

′(𝜉+𝑖 ) ≤ 𝜓 ′(𝜉−𝑖 ).

Through integration by parts formula, we derive for 0 ≤ 𝑖 ≤ 𝑚

1
𝑐 ∫

𝜉𝑖

𝜉𝑖+1
𝑒
𝛽
𝑐 𝑦

(

𝑐 𝜙′(𝑦) + 𝛽 𝜙(𝑦)) 𝑑 𝑦 = 𝑒
𝛽
𝑐 𝜉𝑖𝜙(𝜉𝑖) − 𝑒

𝛽
𝑐 𝜉𝑖+1𝜙(𝜉𝑖+1).

For 𝜉 ∈ (𝜉𝑘+1, 𝜉𝑘) with 0 ≤ 𝑘 ≤ 𝑚, from the definition of upper and lower solutions, we arrive at

𝑃1(𝜙, 𝜓)(𝜉) ≥ 𝑃1(𝜙, 𝜓)(𝜉) = 1
𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐 𝐹1(𝜙, 𝜓)(𝑦)𝑑 𝑦

≥ 1
𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

(

𝑐 𝜙′(𝑦) + 𝛽 𝜙(𝑦)
)

𝑑 𝑦

= 1
𝑐

( 𝑚
∑

𝑗=𝑘+1
∫

𝜉𝑗

𝜉𝑗+1
+∫

𝜉

𝜉𝑘+1

)

𝑒
𝛽(𝑦−𝜉)
𝑐

(

𝑐 𝜙′(𝑦) + 𝛽 𝜙(𝑦)
)

𝑑 𝑦

≥ 𝜙(𝜉) − 𝑒
𝛽(𝜉𝑚+1−𝜉)

𝑐 𝜙(𝜉𝑚+1) = 𝜙(𝜉)

owing to 𝜉𝑚+1 = −∞. Similarly, we get

𝑃1(𝜙, 𝜓)(𝜉) ≤ 𝑃1(𝜙, 𝜓)(𝜉) = 1
𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐 𝐹1(𝜙, 𝜓)(𝑦)𝑑 𝑦

≤ 1
𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

(

𝑐𝜙
′
(𝑦) + 𝛽𝜙(𝑦)

)

𝑑 𝑦

= 1
𝑐

( 𝑚
∑

𝑗=𝑘+1
∫

𝜉𝑗

𝜉𝑗+1
+∫

𝜉

𝜉𝑘+1

)

𝑒
𝛽(𝑦−𝜉)
𝑐

(

𝑐𝜙
′
(𝑦) + 𝛽𝜙(𝑦)

)

𝑑 𝑦

≤ 𝜙(𝜉) − 𝑒
𝛽(𝜉𝑚+1−𝜉)

𝑐 𝜙(𝜉𝑚+1) = 𝜙(𝜉)

owing to 𝜉𝑚+1 = −∞. Then in a similar way, we can verify that

𝜓(𝜉) ≤ 𝑃2(𝜙, 𝜓)(𝜉) ≤ 𝜓(𝜉).

Therefore, 𝑃 (𝛴) ⊆ 𝛴.
Next, we show that 𝑃 is completely continuous with respect to the norm | ⋅ |𝜇 by the choice of 𝜇. First of all, we show the

ontinuity of 𝑃 on 𝛴 with respect to the norm | ⋅ |𝜇 . Let 𝛷1 = (𝜙1, 𝜓1) and 𝛷2 = (𝜙2, 𝜓2) be in 𝛴, then a direct calculation yields that

|𝐹1(𝜙1, 𝜓1)(𝜉) − 𝐹1(𝜙2, 𝜓2)(𝜉)|

=|𝛽 𝜙1(𝜉) + 𝑑11[𝜙1](𝜉) + 𝜙1(𝜉)𝑓 (𝜙1, 𝜓1)(𝜉) − 𝛽 𝜙2(𝜉) − 𝑑11[𝜙2](𝜉) − 𝜙2(𝜉)𝑓 (𝜙2, 𝜓2)(𝜉)|

≤
(

𝛽 + 𝑑1 + 𝐶
)

|𝜙1(𝜉) − 𝜙2(𝜉)| + 𝐶|𝜓1(𝜉) − 𝜓2(𝜉)| + 𝑑1 ∫R
𝐽1(𝜉 − 𝜏)|𝜙1(𝜏) − 𝜙2(𝜏)|𝑑 𝜏 ,

where

𝐶 = sup
(𝜙,𝜓)∈𝑋𝑏

{

𝑓 (𝜙, 𝜓) + 𝜙𝜕 𝑓 (𝜙, 𝜓)
𝜕 𝜙 , 𝜙𝜕 𝑓 (𝜙, 𝜓)

𝜕 𝜓
}

.

Furthermore, we have

|𝑃1(𝜙1, 𝜓1)(𝜉) − 𝑃1(𝜙2, 𝜓2)(𝜉)|𝑒−𝜇|𝜉|

=1
𝑐
|

|

|∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

(

𝐹1(𝜙1, 𝜓1)(𝑦) − 𝐹1(𝜙2, 𝜓2)(𝑦)
)

𝑑 𝑦||
|

𝑒−𝜇|𝜉|

≤ 𝑒
−𝜇|𝜉|

𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

|𝐹1(𝜙1, 𝜓1)(𝑦) − 𝐹1(𝜙2, 𝜓2)(𝑦)|𝑑 𝑦

≤
(

𝛽 + 𝑑1 + 𝐶
)

𝑒−𝜇|𝜉|

𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

|𝜙1(𝑦) − 𝜙2(𝑦)|𝑑 𝑦

+ 𝐶 𝑒−𝜇|𝜉| 𝜉
𝑒
𝛽(𝑦−𝜉)
𝑐

|𝜓1(𝑦) − 𝜓2(𝑦)|𝑑 𝑦
𝑐 ∫−∞

5 
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+
𝑑1𝑒−𝜇|𝜉|

𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

(

∫R
𝐽1(𝑦 − 𝜏)|𝜙1(𝜏) − 𝜙2(𝜏)|𝑑 𝜏

)

𝑑 𝑦

=𝐼1 + 𝐼2 + 𝐼3.

Now, let us continue estimating 𝐼1, 𝐼2 and 𝐼3, respectively. Note that |𝑦| − |𝜉| ≤ 𝜉 − 𝑦 for all 𝑦 ≤ 𝜉, we have

∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐 𝑒𝜇|𝑦|𝑒−𝜇|𝜉|𝑑 𝑦 ≤ ∫

𝜉

−∞
𝑒
(𝛽−𝑐 𝜇)(𝑦−𝜉)

𝑐 𝑑 𝑦 = 𝑐
𝛽 − 𝑐 𝜇 . (12)

For 𝐼1, we utilize (12) to get

𝐼1 =

(

𝛽 + 𝑑1 + 𝐶
)

𝑒−𝜇|𝜉|

𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

|𝜙1(𝑦) − 𝜙2(𝑦)|𝑑 𝑦

=

(

𝛽 + 𝑑1 + 𝐶
)

𝑒−𝜇|𝜉|

𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐 𝑒𝜇|𝑦||𝜙1(𝑦) − 𝜙2(𝑦)|𝑒−𝜇|𝑦|𝑑 𝑦

≤
|𝛷1 −𝛷2|𝜇

(

𝛽 + 𝑑1 + 𝐶
)

𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐 𝑒𝜇|𝑦|𝑒−𝜇|𝜉|𝑑 𝑦

≤
𝛽 + 𝑑1 + 𝐶
𝛽 − 𝑐 𝜇 |𝛷1 −𝛷2|𝜇 .

For 𝐼2, similarly, we get for 𝜇 ∈ (0, 𝛽∕𝑐)
𝐼2 ≤

𝐶
𝛽 − 𝑐 𝜇 |𝛷1 −𝛷2|𝜇 .

For 𝐼3, we also have

𝐼3 =
𝑑1𝑒−𝜇|𝜉|

𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

(

∫R
𝐽1(𝑦 − 𝜏)|𝜙1(𝜏) − 𝜙2(𝜏)|𝑑 𝜏

)

𝑑 𝑦

≤
𝑑1𝑒−𝜇|𝜉||𝛷1 −𝛷2|𝜇

𝑐 ∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐

(

∫R
𝐽1(𝑧)𝑒𝜇|𝑦−𝑧|𝑑 𝑧

)

𝑑 𝑦

≤
𝑑1|𝛷1 −𝛷2|𝜇

𝑐

(

∫R
𝐽1(𝑧)𝑒𝜇|𝑧|𝑑 𝑧

)

∫

𝜉

−∞
𝑒
𝛽(𝑦−𝜉)
𝑐 𝑒𝜇|𝑦|𝑒−𝜇|𝜉|𝑑 𝑦

≤
𝑑1

𝛽 − 𝑐 𝜇
(

∫R
𝐽1(𝑧)𝑒𝜇|𝑧|𝑑 𝑧

)

|𝛷1 −𝛷2|𝜇 <∞

owing to (J2). Based on the preceding three estimates, we infer that

|𝑃1(𝜙1, 𝜓1)(𝜉) − 𝑃1(𝜙2, 𝜓2)(𝜉)|𝑒−𝜇|𝜉| ≤𝑀1|𝛷1 −𝛷2|𝜇 ,

where

𝑀1 =
𝛽 + 𝑑1 + 2𝐶 + 𝑑1 ∫R

𝐽1(𝑧)𝑒𝜇|𝑧|𝑑 𝑧
𝛽 − 𝑐 𝜇 .

Similarly, there exists a positive constant 𝑀2 such that

|𝑃2(𝜙1, 𝜓1)(𝜉) − 𝑃2(𝜙2, 𝜓2)(𝜉)|𝑒−𝜇|𝜉| ≤𝑀2|𝛷1 −𝛷2|𝜇 .

Hence 𝑃 is continuous on 𝛴 with respect to the norm | ⋅ |𝜇 . Simultaneously, for (𝜙, 𝜓) ∈ 𝛴,

|

|

|

𝑑
𝑑 𝜉 𝑃1(𝜙, 𝜓)(𝜉)

|

|

|

= |

|

|

−
𝛽
𝑐
𝑃1(𝜙, 𝜓)(𝜉) + 1

𝑐
𝐹1(𝜙, 𝜓)(𝜉)||

|

≤ 𝛽
𝑐
𝜙(𝜉) + 1

𝑐
𝐹1(1, 0) ≤

2𝛽
𝑐
,

|

|

|

𝑑
𝑑 𝜉 𝑃2(𝜙, 𝜓)(𝜉)

|

|

|

= |

|

|

−
𝛽
𝑐
𝑃2(𝜙, 𝜓)(𝜉) + 1

𝑐
𝐹2(𝜙, 𝜓)(𝜉)||

|

≤ 𝛽
𝑐
𝜓(𝜉) + 1

𝑐
𝐹2(1, 1) ≤

2𝛽
𝑐
.

Thus, 𝑃 (𝛴) is equicontinuous.
Using an argument in Lemma 3.4 [32], one can assert that 𝑃 ∶ 𝛴 → 𝛴 is compact. Actually, for any (𝜙, 𝜓) ∈ 𝛴 and 𝑛 ∈ N, we

define

𝑃 𝑛 (𝜙, 𝜓) (𝜉) =
⎧

⎪

⎨

⎪

⎩

𝑃 (𝜙, 𝜓) (−𝑛), 𝜉 < −𝑛,

𝑃 (𝜙, 𝜓) (𝜉), 𝜉 ∈ [−𝑛, 𝑛],
𝑃 (𝜙, 𝜓) (𝑛), 𝜉 > 𝑛.

It is clear that 𝑃 𝑛 ∶ 𝛴 → 𝐵𝜇(R,R2) is continuous, and 𝑃 𝑛(𝛴) is equicontinuous and uniformly bounded with respect to norm | ⋅ |𝜇 in
𝐵𝜇(R,R2), implying that 𝑃 𝑛 is compact operator. Furthermore, owing to 𝑃1(𝜙, 𝜓) ≤ 𝜙 ≤ 1, we have

|𝑃1(𝜙, 𝜓)(𝜉) − 𝑃 𝑛1 (𝜙, 𝜓)(𝜉)|𝜇 ≤ sup
𝜉∈(−∞,−𝑛)∪(𝑛,+∞)

|𝑃1(𝜙, 𝜓)(𝜉) − 𝑃 𝑛1 (𝜙, 𝜓)(𝜉)|𝑒−𝜇 𝑛 ≤ 2𝑒−𝜇 𝑛,
6 
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which gives

|𝑃1(𝜙, 𝜓)(𝜉) − 𝑃 𝑛1 (𝜙, 𝜓)(𝜉)|𝜇 → 0 as 𝑛→ +∞.

Similarly, we can prove that

|𝑃2(𝜙, 𝜓)(𝜉) − 𝑃 𝑛2 (𝜙, 𝜓)(𝜉)|𝜇 → 0 as 𝑛→ +∞.

Thus, |𝑃 (𝜙, 𝜓)(𝜉) − 𝑃 𝑛(𝜙, 𝜓)(𝜉)|𝜇 → 0 as 𝑛 → +∞. From Proposition 2.12 in [33], 𝑃 is compact operator with respect to the norm
| ⋅ |𝜇 . Now, by Schauder’s fixed point theorem, there exists (𝜙̂, 𝜓̂) ∈ 𝛴 such that 𝑃 (𝜙̂, 𝜓̂) = (𝜙̂, 𝜓̂), which implies that (𝜙̂, 𝜓̂) is a fixed
point of 𝑃 in 𝛴. Therefore, we conclude the following lemma.

Lemma 2.1. If (4) has a pair of upper and lower solutions
(

𝜙, 𝜓
)

and
(

𝜙, 𝜓
)

satisfying

𝜙′(𝜉−𝑖 ) ≤ 𝜙′(𝜉+𝑖 ), 𝜙
′
(𝜉+𝑖 ) ≤ 𝜙

′
(𝜉−𝑖 ), 𝜓 ′(𝜉−𝑖 ) ≤ 𝜓 ′(𝜉+𝑖 ), 𝜓

′(𝜉+𝑖 ) ≤ 𝜓 ′(𝜉−𝑖 ) for 𝜉𝑖 ∈ 𝐸 .
Then it has a solution (𝜙, 𝜓) satisfying for 𝜉 ∈ R

𝜙(𝜉) ≤ 𝜙(𝜉) ≤ 𝜙(𝜉), 𝜓(𝜉) ≤ 𝜓(𝜉) ≤ 𝜓(𝜉).

3. The existence of traveling waves for 𝒄 > 𝒄∗

The primary aim of this section is to demonstrate the existence of traveling waves with 𝑐 > 𝑐∗ of (2), where 𝑐∗ is defined in (6).
Firstly, a pair of appropriate upper and lower solutions is constructed, following which we immediately obtain a positive solution
(𝜙, 𝜓)(𝜉) of (4). Subsequently, using a novel sequence we investigate the asymptotic behavior of this positive solution at 𝜉 = +∞ via
he squeeze method [10,34], confirming the existence of traveling waves for 𝑐 > 𝑐∗.

3.1. Upper and lower solutions

To identify appropriate upper and lower solutions, we define

𝛱(𝜆, 𝑐) = 𝑑1

(

∫R
𝐽1(𝑦)e−𝜆𝑦d𝑦 − 1

)

− 𝑐 𝜆,

then one can easily check that for 𝑐 > 𝑐∗

𝛱(0, 𝑐) = 0 and 𝜕 𝛱(𝜆, 𝑐)
𝜕 𝜆

|

|

|

|𝜆=0
= −𝑐 < 0.

Thus, we choose 𝜂 ∈ (0, 𝜆1) to satisfy 𝛱(𝜂 , 𝑐) < 0. We now introduce functions

𝜙(𝜉) = 1, 𝜙(𝜉) =
⎧

⎪

⎨

⎪

⎩

1 + 𝑏
2

, 𝜉 > 0,

1 − 1 − 𝑏
2

𝑒𝜂 𝜉 , 𝜉 ≤ 0,

𝜓(𝜉) =
{

1, 𝜉 > 0,

𝑒𝜆1𝜉 , 𝜉 ≤ 0,
𝜓(𝜉) =

{

0, 𝜉 > 𝜉1,
𝑒𝜆1𝜉

(

1 − 𝑟𝑒𝜀𝜉) , 𝜉 ≤ 𝜉1,

where 𝜉1 = −(1∕𝜀) ln 𝑟, and 𝜀, 𝑟 satisfy

0 < 𝜀 < min
{

𝜆1, 𝜆2 − 𝜆1
}

, 𝑟 > max
{

1, −2𝑠
(1 + 𝑏)𝛥(𝜆1 + 𝜀, 𝑐)

}

.

Lemma 3.1. Suppose (7) holds. For 𝑐 > 𝑐∗, (𝜙, 𝜓) and (𝜙, 𝜓) satisfy (8) and (9).

Proof. Recalling that

𝑓 (𝜙, 𝜓) = (1 − 𝜙)
(

𝜙
𝑏
− 1

)

−
𝑚𝜓

𝜙 + 𝑎𝜓
,

since 𝜙(𝜉) = 1 and 𝜓(𝜉) ≥ 0 for 𝜉 ∈ R, then

𝑑11

[

𝜙
]

(𝜉) − 𝑐𝜙′
(𝜉) + 𝜙(𝜉)𝑓

(

𝜙, 𝜓
)

(𝜉) = −
𝑚𝜓(𝜉)

1 + 𝑎𝜓(𝜉) ≤ 0,

which implies (8) holds. For (9), since 𝜙(𝜉) is non-increasing in R, then

∫ 𝐽1(𝜉 − 𝑦)𝜙(𝑦)𝑑 𝑦 ≥ 1 + 𝑏
2 ∫ 𝐽1(𝜉 − 𝑦)𝑑 𝑦 = 1 + 𝑏

2
,

R R

7 
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and

∫R
𝐽1(𝜉 − 𝑦)𝜙(𝑦)𝑑 𝑦 ≥ ∫R

𝐽1(𝜉 − 𝑦)
(

1 − 1 − 𝑏
2

𝑒𝜂 𝑦
)

𝑑 𝑦 = 1 − 1 − 𝑏
2

𝑒𝜂 𝜉 ∫R
𝐽1(𝑦)𝑒−𝜂 𝑦𝑑 𝑦.

Hence we have

∫R
𝐽1(𝜉 − 𝑦)𝜙(𝑦)𝑑 𝑦 ≥ max

{

1 + 𝑏
2

, 1 − 1 − 𝑏
2

𝑒𝜂 𝜉 ∫R
𝐽1(𝑦)𝑒−𝜂 𝑦𝑑 𝑦

}

. (13)

If 𝜉 > 0, then 𝜙(𝜉) = (1 + 𝑏)∕2 and 𝜓(𝜉) = 1. It follows from (13) that

1

[

𝜙
]

(𝜉) = ∫R
𝐽𝑖(𝜉 − 𝑦)𝜙(𝑦)𝑑 𝑦 − 𝜙(𝜉) ≥ 0.

By (7), we further get

𝑑11

[

𝜙
]

(𝜉) − 𝑐 𝜙′(𝜉) + 𝜙(𝜉)𝑓
(

𝜙, 𝜓
)

(𝜉) ≥ 𝜙
(

(1 − 𝑏)2
4𝑏

− 2𝑚
1 + 𝑏 + 2𝑎

)

> 0.

If 𝜉 < 0, then 𝜙 = 1 − (1 − 𝑏)𝑒𝜂 𝜉∕2 and 𝜓 = 𝑒𝜆1𝜉 . It follows from (13) that

1

[

𝜙
]

(𝜉) =∫R
𝐽𝑖(𝜉 − 𝑦)𝜙(𝑦)𝑑 𝑦 − 𝜙(𝜉)

≥1 − 1 − 𝑏
2

𝑒𝜂 𝜉 ∫R
𝐽1(𝑦)𝑒−𝜂 𝑦𝑑 𝑦 −

(

1 − 1 − 𝑏
2

𝑒𝜂 𝜉
)

=1 − 𝑏
2

𝑒𝜂 𝜉
(

1 − ∫R
𝐽1(𝑦)𝑒−𝜂 𝑦𝑑 𝑦

)

.

Thus, we have

𝑑11

[

𝜙
]

(𝜉) − 𝑐 𝜙′(𝜉) + 𝜙(𝜉)𝑓
(

𝜙, 𝜓
)

(𝜉)

≥1 − 𝑏
2

𝑒𝜂 𝜉
[

𝑑1

(

1 − ∫R
𝐽1(𝑦)𝑒−𝜂 𝑦𝑑 𝑦

)

+ 𝑐 𝜂
]

+ 𝜙𝑒𝜂 𝜉
[

1 − 𝑏
2

( 1
𝑏
− 1 − 𝑏

2𝑏
𝑒𝜂 𝜉 − 1

)

− 𝑚𝑒(𝜆1−𝜂)𝜉

𝜙(𝜉) + 𝑎𝑒𝜆1𝜉

]

= − 1 − 𝑏
2

𝑒𝜂 𝜉𝛱(𝜂 , 𝑐) + 𝜙𝑒𝜂 𝜉𝐾1

where

𝐾1 =
1 − 𝑏
2

( 1
𝑏
− 1 − 𝑏

2𝑏
𝑒𝜂 𝜉 − 1

)

− 𝑚𝑒(𝜆1−𝜂)𝜉

𝜙(𝜉) + 𝑎𝑒𝜆1𝜉 .

Since 0 < 𝜂 < 𝜆1, then (𝜆1 − 𝜂)𝜉 < 0. Owing to 𝜙 ≥ (1 + 𝑏)∕2 over R and (7), we get

𝐾1 ≥
(1 − 𝑏)2

4𝑏
− 2𝑚

1 + 𝑏 > 0.

On the other hand, 𝛱(𝜂 , 𝑐) < 0 by the choice of 𝜂, which ensures that (9) holds. Therefore, we complete the proof. □

Lemma 3.2. For 𝑐 > 𝑐∗, (𝜙, 𝜓) and (𝜙, 𝜓) satisfy (10) and (11).

Proof. It is easy to check that

∫R
𝐽1(𝜉 − 𝑦)𝜓(𝑦)𝑑 𝑦 ≤ min

{

1, 𝑒𝜆1𝜉 ∫R
𝐽2(𝑦)𝑒−𝜆1𝑦𝑑 𝑦

}

.

If 𝜉 > 0, then 𝜓(𝜉) = 𝜙(𝜉) = 1. Recall that 𝑔(𝜙, 𝜓) = 𝑠 (1 − 𝜓∕𝜙), clearly, we have

𝑑22
[

𝜓
]

(𝜉) − 𝑐𝜓 ′(𝜉) + 𝜓(𝜉)𝑔
(

𝜙, 𝜓
)

(𝜉) ≤ 0.

If 𝜉 < 0, then 𝜓(𝜉) = 𝑒𝜆1𝜉 and 𝜙(𝜉) = 1. Note that 𝛥(𝜆1, 𝑐) = 0 for 𝑐 > 𝑐∗, we arrive at

𝑑22
[

𝜓
]

(𝜉) − 𝑐𝜓 ′(𝜉) + 𝜓(𝜉)𝑔
(

𝜙, 𝜓
)

(𝜉)

≤𝑒𝜆1𝜉
[

𝑑2

(

∫R
𝐽2(𝑦)𝑒−𝜆1𝑦𝑑 𝑦 − 1

)

− 𝑐 𝜆1 + 𝑠
]

− 𝑠𝑒2𝜆1𝜉

=𝑒𝜆1𝜉𝛥(𝜆1, 𝑐) − 𝑠𝑒2𝜆1𝜉 = −𝑠𝑒2𝜆1𝜉 ≤ 0.

Hence (10) holds. For (11), it is easy to check that

𝐽1(𝜉 − 𝑦)𝜓(𝑦)𝑑 𝑦 ≥ max
{

0, 𝐽2(𝑦)𝑒𝜆1(𝜉−𝑦)
(

1 − 𝑟𝑒𝜀(𝜉−𝑦)) 𝑑 𝑦
}

.
∫R ∫R
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If 𝜉 > 𝜉1, 𝜓(𝜉) = 0, clearly, (11) holds. If 𝜉 < 𝜉1 < 0, then

𝜓(𝜉) = 𝑒𝜆1𝜉
(

1 − 𝑟𝑒𝜀𝜉) , 𝜓 ′(𝜉) = 𝑒𝜆1𝜉
(

𝜆1 − 𝑟(𝜆1 + 𝜀)𝑒𝜀𝜉
)

.

Since 𝜀 < 𝜆2 − 𝜆1, we have 𝛥(𝜆1 + 𝜀, 𝑐) < 0 for 𝑐 > 𝑐∗. Owing to 𝜙 ≥ (1 + 𝑏)∕2 over R and the choice of 𝑟, we arrive at

𝑑22

[

𝜓
]

(𝜉) − 𝑐 𝜓 ′(𝜉) + 𝜓(𝜉)𝑔
(

𝜙, 𝜓
)

(𝜉)

≥𝑑2
(

∫R
𝐽2(𝑦)𝑒𝜆1(𝜉−𝑦)

(

1 − 𝑟𝑒𝜀(𝜉−𝑦)) 𝑑 𝑦 − 𝑒𝜆1𝜉 (1 − 𝑟𝑒𝜀𝜉)
)

− 𝑐 𝑒𝜆1𝜉 (𝜆1 − 𝑟(𝜆1 + 𝜀)𝑒𝜀𝜉
)

+ 𝑠𝑒𝜆1𝜉
(

1 − 𝑟𝑒𝜀𝜉) − 𝑠𝑒2𝜆1𝜉
(

1 − 𝑟𝑒𝜀𝜉)2
𝜙(𝜉)

≥𝑒𝜆1𝜉
[

𝑑2

(

∫R
𝐽2(𝑦)𝑒−𝜆1𝑦𝑑 𝑦 − 1

)

− 𝑐 𝜆1 + 𝑠
]

− 2𝑠𝑒2𝜆1𝜉
1 + 𝑏

− 𝑟𝑒(𝜆1+𝜀)𝜉
[

𝑑2

(

∫R
𝐽2(𝑦)𝑒−(𝜆1+𝜀)𝑦𝑑 𝑦 − 1

)

− 𝑐(𝜆1 + 𝜀) + 𝑠
]

=𝑒𝜆1𝜉𝛥(𝜆1, 𝑐) − 𝑟𝑒(𝜆1+𝜀)𝜉𝛥(𝜆1 + 𝜀, 𝑐) − 2𝑠𝑒2𝜆1𝜉
1 + 𝑏

=𝑒(𝜆1+𝜀)𝜉
(

−𝑟𝛥(𝜆1 + 𝜀, 𝑐) − 2𝑠𝑒(𝜆1−𝜀)𝜉
1 + 𝑏

)

≥𝑒(𝜆1+𝜀)𝜉
(

−𝑟𝛥(𝜆1 + 𝜀, 𝑐) − 2𝑠
1 + 𝑏

)

> 0.

Hence (11) holds. Therefore, we complete the proof. □

3.2. Asymptotic behavior

In the light of upper and lower solutions, a positive solution (𝜙, 𝜓)(𝜉) of (4) is derived with the aid of Lemma 2.1. Our primary
bjective in this subsection is to investigate the asymptotic behavior of the positive solution at 𝜉 = +∞.

We firstly give the existence result on the positive solution of (4).

Theorem 3.1. Suppose (7) holds, (4) has a positive solution (𝜙, 𝜓)(𝜉) satisfying (1 + 𝑏)∕2 < 𝜙(𝜉) < 1 and 0 < 𝜓(𝜉) < 1 over R for all
𝑐 > 𝑐∗.

Proof. From Lemma 2.1, (4) has a positive solution (𝜙, 𝜓)(𝜉) satisfying 𝜙(𝜉) ≤ 𝜙(𝜉) ≤ 𝜙(𝜉) and 𝜓(𝜉) ≤ 𝜓(𝜉) ≤ 𝜓(𝜉) over R. We firstly
how that 𝜙(𝜉) > (1 + 𝑏)∕2 over R. For contradiction, assume that there exists a 𝜉0 ∈ R such that 𝜙(𝜉0) = (1 + 𝑏)∕2. Then 𝜙′(𝜉0) = 0
wing to 𝜙(𝜉) ≥ (1 + 𝑏)∕2 over R. By 𝜙-equation of (4), due to 𝜓(𝜉) ≤ 1 and (7), we get

0 ≥ −𝑑11[𝜙](𝜉0) = 𝜙(𝜉0)𝑓 (𝜙, 𝜓) (𝜉0) ≥ 𝜙(𝜉0)𝑓 ((1 + 𝑏)∕2, 1) > 0.

Thus, 𝜙(𝜉) > (1 + 𝑏)∕2 over R. We also verify that 𝜓(𝜉) > 0 over R by contradiction. Assume that there exists a 𝜉0 ∈ R such that
𝜓(𝜉0) = 0, then 𝜓 ′(𝜉0) = 0 owing to 𝜓(𝜉) being non-negative over R. By 𝜓-equation of (4), we get

∫R
𝐽2(𝜉0 − 𝑦)𝜓(𝑦)𝑑 𝑦 = 0 for all 𝑦 ∈ R.

Thus, 𝜓(𝜉) ≡ 0 over R, which contradicts to 𝜓(𝜉) > 𝜓(𝜉) > 0 for 𝜉 < 𝜉1. We further show that 𝜙(𝜉) < 1 over R. Contrarily, if there
exists a 𝜉0 ∈ R such that 𝜙(𝜉0) = 1, then 𝜙′(𝜉0) = 0 owing to 𝜙(𝜉) ≤ 1 over R. By 𝜙-equation of (4), we get

0 ≤ −𝑑11[𝜙](𝜉0) = − 𝑚𝜓(𝜉0)
1 + 𝑎𝜓(𝜉0)

< 0,

implying that 𝜙(𝜉) < 1 over R. The instance where 𝜓(𝜉) < 1 can be treated in a similar way. Therefore, we conclude the proof. □

Regarding the positive solution (𝜙, 𝜓)(𝜉) obtained in the preceding theorem, we have

1 = lim
𝜉→−∞

𝜙(𝜉) ≤ lim inf
𝜉→−∞

𝜙(𝜉) ≤ lim sup
𝜉→−∞

𝜙(𝜉) ≤ lim
𝜉→−∞

𝜙(𝜉) = 1,

0 = lim
𝜉→−∞

𝜓(𝜉) ≤ lim inf
𝜉→−∞

𝜓(𝜉) ≤ lim sup
𝜉→−∞

𝜓(𝜉) ≤ lim
𝜉→−∞

𝜓(𝜉) = 0,

which gives (𝜙, 𝜓)(−∞) = (1, 0). Next, our main goal is to prove

lim
𝜉→+∞

𝜙(𝜉) = lim
𝜉→+∞

𝜓(𝜉) = 𝑢∗2 .

To do it, we define

𝜙+ = lim sup
𝜉→+∞

𝜙(𝜉), 𝜙− = lim inf
𝜉→+∞

𝜙(𝜉),

𝜓+ = lim sup𝜓(𝜉), 𝜓− = lim inf
𝜉→+∞

𝜓(𝜉).

𝜉→+∞

9 
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Lemma 3.3. 𝜙− ≤ 𝜓− ≤ 𝜓+ ≤ 𝜙+.

Proof. We first show that 𝜙− ≤ 𝜓−. For contradiction, we assume that 𝜙− > 𝜓−.
When 𝜓(𝜉) exhibits eventually monotone, then 𝜓(+∞) exists and

∫

+∞

0
𝜓 ′(𝑠)𝑑 𝑠 = 𝜓(+∞) − 𝜓(0) <∞

since 𝜓(𝜉) is bounded on R. Note that if 𝜓 ′(𝜉) ≤ 0 for 𝜉 ≫ 1, then lim sup𝜉→+∞ 𝜓 ′(𝜉) = 0, while if 𝜓 ′(𝜉) ≥ 0 for 𝜉 ≫ 1, then
im inf 𝜉→+∞ 𝜓 ′(𝜉) = 0. Thus, we always can find a sequence

{

𝜉𝑛
}+∞
𝑛=0, with 𝜉𝑛 → +∞ as 𝑛→ +∞, such that

lim
𝑛→+∞

𝜓(𝜉𝑛) = 𝜓− = 𝜓+ < 𝜙− and lim
𝑛→+∞

𝜓 ′(𝜉𝑛) = 0. (14)

Integrating 𝜓-equation of (4) from 0 to 𝜉𝑛, we obtain

𝑐[𝜓(𝜉𝑛) − 𝜓(0)] − 𝑑2 ∫
𝜉𝑛

0
2 [𝜓] (𝜉)𝑑 𝜉 = ∫

𝜉𝑛

0
𝜓(𝜉)𝑔(𝜙, 𝜓)(𝜉)𝑑 𝜉 . (15)

Direct computation yields

∫

𝜉𝑛

0
2 [𝜓] (𝜉)𝑑 𝜉 = ∫

𝜉𝑛

0 ∫R
𝐽2(𝑦)[𝜓(𝜉 − 𝑦) − 𝜓(𝜉)]𝑑 𝑦𝑑 𝜉

= ∫

𝜉𝑛

0 ∫R
𝐽2(𝑦)(−𝑦)∫

1

0
𝜓 ′(𝜉 − 𝜏 𝑦)𝑑 𝜏 𝑑 𝑦𝑑 𝜉

= ∫R
𝐽2(𝑦)(−𝑦)∫

1

0 ∫

𝜉𝑛

0
𝜓 ′(𝜉 − 𝜏 𝑦)𝑑 𝜉 𝑑 𝜏 𝑑 𝑦

= ∫R
𝐽2(𝑦)(−𝑦)∫

1

0
[𝜓(𝜉𝑛 − 𝜏 𝑦) − 𝜓(−𝜏 𝑦)]𝑑 𝜏 𝑑 𝑦.

Since 0 < 𝜓(𝜉) < 1 over R, from (J1) and (J2), we further arrive at

∫R
𝐽2(𝑦)(−𝑦)∫

1

0
[𝜓(𝜉𝑛 − 𝜏 𝑦) − 𝜓(−𝜏 𝑦)]𝑑 𝜏 𝑑 𝑦

≤2∫R
𝐽2(𝑦)|𝑦|𝑑 𝑦 ≤ 4∫R

𝐽2(𝑦)𝑒𝑦𝑑 𝑦 <∞.

On the other hand, we have by (14)

lim inf
𝑛→+∞

𝑔(𝜙, 𝜓)(𝜉𝑛) ≥ 𝑔(𝜙−, 𝜓−) = 𝑠
(

1 − 𝜓−
𝜙−

)

> 0. (16)

Hence the left-hand side of (15) is bounded, whereas the right-hand side of (15) is unbounded, which leads to a contradiction.
Next, we examine another case wherein 𝜓(𝜉) is oscillatory as 𝜉 → +∞. We can then find a sequence

{

𝜉𝑛
}+∞
𝑛=0 of the minimal

points of 𝜓(𝜉), with 𝜉𝑛 → +∞ as 𝑛→ +∞, such that

lim
𝑛→+∞

𝜓(𝜉𝑛) = 𝜓− < 𝜙− and 𝜓 ′(𝜉𝑛) = 0. (17)

We also have (16) and get what we desired.
Finally, we proceed by contradiction once again to prove the inequality 𝜓+ ≤ 𝜙+. Assume that 𝜓+ > 𝜙+, similar to (14) and (17),

one always can choose sequence
{

𝜉𝑛
}+∞
𝑛=0, with 𝜉𝑛 → +∞ as 𝑛→ +∞, such that

lim
𝑛→+∞

𝜓(𝜉𝑛) = 𝜓+ > 𝜙+ and lim
𝑛→+∞

𝜓 ′(𝜉𝑛) = 0.

At this moment, (15) remains valid, whereas

lim sup
𝑛→+∞

𝑔 (𝜙, 𝜓) (𝜉𝑛) ≤ 𝑔(𝜙+, 𝜓+) = 𝑠
(

1 − 𝜓+
𝜙+

)

< 0.

Hence whether 𝜓(𝜉) is eventually monotone or oscillatory as 𝜉 → +∞, a contradiction arises. Therefore, we complete the proof. □

Lemma 3.4. Suppose (7) holds, we have (1 + 𝑏)∕2 < 𝜙− ≤ 𝜙+ < 1.

Proof. We omit this proof here, as it follows directly from an argument analogous to Lemma 3.3. □

We are in this position to state the existence theorem for 𝑐 > 𝑐∗.

Theorem 3.2. Under (7) and 𝑏 ∈ (0, 1), (2) has traveling waves connecting (1, 0) and (𝑢∗2 , 𝑢∗2) for 𝑐 > 𝑐∗.
10 
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Proof. We define a sequence
{

𝛾𝑛
}+∞
𝑛=−1, where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾−1 =
1 + 𝑏
2

, 𝛾0 = 1,

𝛾𝑛+1 =
1
2

⎛

⎜

⎜

⎝

𝑏 + 1 +
√

(1 − 𝑏)2 − 4𝑚𝑏𝛾𝑛
𝛾𝑛−1 + 𝑎𝛾𝑛

⎞

⎟

⎟

⎠

.

Under (7) and 𝑏 ∈ (0, 1), 𝛾𝑛 is well-defined and (1 + 𝑏)∕2 ≤ 𝛾𝑛 ≤ 1 for all 𝑛. Moreover, note that

(1 − 𝛾𝑛+1)
( 𝛾𝑛+1

𝑏
− 1

)

=
𝑚𝛾𝑛

𝛾𝑛−1 + 𝑎𝛾𝑛
,

and (1 − 𝛾) (𝛾∕𝑏 − 1) decreases with respect to 𝛾 in
[

(1 + 𝑏)∕2, 1], we first show that the following claims hold.

Claim 1. Under (7), the sequences
{

𝛾2𝑛
}+∞
𝑛=0 and

{

𝛾2𝑛−1
}+∞
𝑛=0 are adjacent, that is

𝛾−1 < 𝛾1 < ⋅ ⋅ ⋅ < 𝛾2𝑛−1 < ⋅ ⋅ ⋅ < 𝑢∗2 < ⋅ ⋅ ⋅ < 𝛾2𝑛 < ⋅ ⋅ ⋅ < 𝛾2 < 𝛾0. (18)

Note that 𝛾−1 < 𝛾1 < 𝑢∗2 < 𝛾2 < 𝛾0 holds since

(1 − 𝛾1)
( 𝛾1
𝑏

− 1
)

= 2𝑚
1 + 𝑏 + 2𝑎 >

𝑚
1 + 𝑎 = (1 − 𝑢∗2)

( 𝑢∗2
𝑏

− 1
)

,

(1 − 𝛾1)
( 𝛾1
𝑏

− 1
)

= 2𝑚
1 + 𝑏 + 2𝑎 <

(1 − 𝑏)2
4𝑏

= (1 − 𝛾−1)
( 𝛾−1
𝑏

− 1
)

,

(1 − 𝛾2)
( 𝛾2
𝑏

− 1
)

=
𝑚𝛾1

𝛾0 + 𝑎𝛾1
< 𝑚

1 + 𝑎 = (1 − 𝑢∗2)
( 𝑢∗2
𝑏

− 1
)

,

(1 − 𝛾2)
( 𝛾2
𝑏

− 1
)

=
𝑚𝛾1

𝛾0 + 𝑎𝛾1
> 0 = (1 − 𝛾0)

( 𝛾0
𝑏

− 1
)

.

Suppose

𝛾𝑛−1 < 𝛾𝑛+1 < 𝑢∗2 < 𝛾𝑛+2 < 𝛾𝑛 with 𝑛 = 2𝑘, 𝑘 ∈ N, (19)

we aim to prove

𝛾𝑛+1 < 𝛾𝑛+3 < 𝑢∗2 < 𝛾𝑛+4 < 𝛾𝑛+2 with 𝑛 = 2𝑘, 𝑘 ∈ N. (20)

Due to 𝛾𝑛+2 > 𝑢∗2 > 𝛾𝑛+1, we have

(1 − 𝛾𝑛+3)
( 𝛾𝑛+3

𝑏
− 1

)

=
𝑚𝛾𝑛+2

𝛾𝑛+1 + 𝑎𝛾𝑛+2
> 𝑚

1 + 𝑎 = (1 − 𝑢∗2)
( 𝑢∗2
𝑏

− 1
)

,

which implies 𝑢∗2 > 𝛾𝑛+3. Thanks to 𝛾𝑛+2 > 𝑢∗2 > 𝛾𝑛+3, we further get

(1 − 𝛾𝑛+4)
( 𝛾𝑛+4

𝑏
− 1

)

=
𝑚𝛾𝑛+3

𝛾𝑛+2 + 𝑎𝛾𝑛+3
< 𝑚

1 + 𝑎 = (1 − 𝑢∗2)
( 𝑢∗2
𝑏

− 1
)

,

implying that 𝛾𝑛+4 > 𝑢∗2. On the other hand, from (19), we have

(1 − 𝛾𝑛+3)
( 𝛾𝑛+3

𝑏
− 1

)

=
𝑚𝛾𝑛+2

𝛾𝑛+1 + 𝑎𝛾𝑛+2
<

𝑚𝛾𝑛
𝛾𝑛−1 + 𝑎𝛾𝑛

= (1 − 𝛾𝑛+1)
( 𝛾𝑛+1

𝑏
− 1

)

,

hence 𝛾𝑛+3 > 𝛾𝑛+1. Due to 𝛾𝑛+3 > 𝛾𝑛+1 and 𝛾𝑛 > 𝛾𝑛+2, we further get

(1 − 𝛾𝑛+4)
( 𝛾𝑛+4

𝑏
− 1

)

=
𝑚𝛾𝑛+3

𝛾𝑛+2 + 𝑎𝛾𝑛+3
>

𝑚𝛾𝑛+1
𝛾𝑛 + 𝑎𝛾𝑛+1

= (1 − 𝛾𝑛+2)
( 𝛾𝑛+2

𝑏
− 1

)

.

Hence we readily obtain (20), which in turn confirms (18). Therefore, the claim is valid by induction.

Claim 2. The sequences
{

𝛾2𝑛
}+∞
𝑛=0 and

{

𝛾2𝑛−1
}+∞
𝑛=0 converge to 𝑢∗2, respectively.

From Claim 1, the sequence
{

𝛾2𝑛
}+∞
𝑛=0 is decreasing with 𝑢∗2 as the lower bound and the sequence

{

𝛾2𝑛−1
}+∞
𝑛=0 is increasing with

𝑢∗2 as the upper bound, then there exist two positive constants 𝛾∗ and 𝛾∗, with 𝛾∗ ≥ 𝑢∗2 ≥ 𝛾∗, such that 𝛾2𝑛 → 𝛾∗ and 𝛾2𝑛−1 → 𝛾∗ as
𝑛→ +∞. Note that

|𝛾∗ − 𝛾∗| ≤ |𝛾∗ − 𝛾2𝑛| + |𝛾2𝑛 − 𝛾2𝑛−1| + |𝛾2𝑛−1 − 𝛾∗|,

it is sufficient to prove that the sequence 𝛾2𝑛 − 𝛾2𝑛−1 → 0 as 𝑛→ +∞. Since

sup
(1+𝑏)∕2≤𝑥,𝑦≤1

{

𝜕
𝜕 𝑥

(

𝑥
𝑦 + 𝑎𝑥

)

, 𝜕
𝜕 𝑦

(

𝑥
𝑦 + 𝑎𝑥

)}

≤ 4
(1 + 𝑎)2(1 + 𝑏)2 ,

utilizing the mean value theorem allows us to conclude that for all 𝑛 ∈ N
11 
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𝑏𝛾2𝑛−2
𝛾2𝑛−3 + 𝑎𝛾2𝑛−2

−
𝑏𝛾2𝑛−1

𝛾2𝑛−2 + 𝑎𝛾2𝑛−1

≤ 4𝑏
(1 + 𝑎)2(1 + 𝑏)2

[

(𝛾2𝑛−2 − 𝛾2𝑛−3) + (𝛾2𝑛−2 − 𝛾2𝑛−1)
]

< 8𝑏
(1 + 𝑎)2(1 + 𝑏)2 (𝛾2𝑛−2 − 𝛾2𝑛−3)

< 2
(1 + 𝑎)2 (𝛾2𝑛−2 − 𝛾2𝑛−3)

owing to 𝛾2𝑛−3 < 𝛾2𝑛−1. Then a direct calculation gives

𝛾2𝑛 − 𝛾2𝑛−1 =
1
2

⎛

⎜

⎜

⎝

√

(1 − 𝑏)2 − 4𝑚𝑏𝛾2𝑛−1
𝛾2𝑛−2 + 𝑎𝛾2𝑛−1

−

√

(1 − 𝑏)2 − 4𝑚𝑏𝛾2𝑛−2
𝛾2𝑛−3 + 𝑎𝛾2𝑛−2

⎞

⎟

⎟

⎠

=
2𝑚

(

𝑏𝛾2𝑛−2
𝛾2𝑛−3+𝑎𝛾2𝑛−2

− 𝑏𝛾2𝑛−1
𝛾2𝑛−2+𝑎𝛾2𝑛−1

)

√

(1 − 𝑏)2 − 4𝑚𝑏𝛾2𝑛−1
𝛾2𝑛−2+𝑎𝛾𝑛2−1

+
√

(1 − 𝑏)2 − 4𝑚𝑏𝛾2𝑛−2
𝛾2𝑛−3+𝑎𝛾2𝑛−2

≤
2𝑚

(

𝑏𝛾2𝑛−2
𝛾2𝑛−3+𝑎𝛾2𝑛−2

− 𝑏𝛾2𝑛−1
𝛾2𝑛−2+𝑎𝛾2𝑛−1

)

√

(1 − 𝑏)2 − 4𝑚𝑏𝛾2𝑛−1
𝛾2𝑛−2+𝑎𝛾2𝑛−1

≤
4𝑚

(1+𝑎)2
√

(1 − 𝑏)2 − 4𝑚𝑏
1+𝑎

(𝛾2𝑛−2 − 𝛾2𝑛−3)

∶= 𝜌(𝛾2𝑛−2 − 𝛾2𝑛−3).

If 𝜌 ∈ (0, 1), that is

𝑚 < (1 + 𝑎)3
8

⎛

⎜

⎜

⎝

√

𝑏2 + 4
( 1 − 𝑏
1 + 𝑎

)2
− 𝑏

⎞

⎟

⎟

⎠

,

then one can lightly verify 𝛾2𝑛 − 𝛾2𝑛−1 → 0 as 𝑛→ +∞. Hence, the claim is valid.
Now, we show that (𝜙, 𝜓)(+∞) = (𝑢∗2 , 𝑢∗2). It follows from Lemma 3.4 that

𝛾−1 < 𝜙− ≤ 𝜓− ≤ 𝜓+ ≤ 𝜙+ < 𝛾0.
According to Claim 2, one can see that (𝜙, 𝜓)(+∞) = (𝑢∗2 , 𝑢∗2) holds as long as

𝛾2𝑛−1 < 𝜙− ≤ 𝜓− ≤ 𝜓+ ≤ 𝜙+ < 𝛾2𝑛 for all 𝑛 ∈ N.

Hence we define

𝑛0 = sup{𝑛 ∈ N|𝛾2𝑛−1 < 𝜙− ≤ 𝜓− ≤ 𝜓+ ≤ 𝜙+ < 𝛾2𝑛
}

,

and we will prove 𝑛0 = +∞ by contradiction, assuming initially that 𝑛0 is finite. If that, from the definition of 𝑛0, it holds that either

𝛾2𝑛0−1 = 𝜙− ≤ 𝜓− ≤ 𝜓+ ≤ 𝜙+ < 𝛾2𝑛
or

𝛾2𝑛0−1 < 𝜙− ≤ 𝜓− ≤ 𝜓+ ≤ 𝜙+ = 𝛾2𝑛.

Firstly, we assume that 𝜙− = 𝛾2𝑛0−1. If 𝜙(𝜉) is eventually monotone, then 𝜙(+∞) = 𝛾2𝑛0−1 and

∫

+∞

0
𝜙′(𝜉)𝑑 𝜉 = 𝛾2𝑛0−1 − 𝜙(0) < ∞.

Note that lim sup𝜉→+∞ 𝜙′(𝜉) = 0 if 𝜙′(𝜉) ≤ 0 for 𝜉 ≫ 1 or lim inf 𝜉→+∞ 𝜙′(𝜉) = 0 if 𝜙′(𝜉) ≥ 0 for 𝜉 ≫ 1, then we can find a sequence
𝜉𝑛
}+∞
𝑛=0, with 𝜉𝑛 → +∞ as 𝑛→ +∞, such that

lim
𝑛→+∞

𝜙(𝜉𝑛) = 𝛾2𝑛0−1 and lim
𝑛→+∞

𝜙′(𝜉𝑛) = 0.

Integrating 𝜙-equation of (4) from 0 to 𝜉𝑛, we obtain

𝑐[𝜙(𝜉𝑛) − 𝜙(0)]−𝑑1 ∫
𝜉𝑛

0
1 [𝜙] (𝜉)𝑑 𝜉 = ∫

𝜉𝑛

0
𝜙(𝜉)𝑓 (𝜙, 𝜓) (𝜉)𝑑 𝜉 . (21)

Hence, following a similar argument as in Lemma 3.3, the left-hand side of (21) is bounded, whereas the right-hand side of (21)
remains unbounded since
12 
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lim inf
𝑛→+∞

𝑓 (𝜙, 𝜓) (𝜉𝑛) ≥ 𝑓
(

𝛾2𝑛0−1, 𝛾2𝑛0−2
)

> (1 − 𝛾2𝑛0−1)
( 𝛾2𝑛0−1

𝑏
− 1

)

−
𝑚𝛾2𝑛0−2

𝛾2𝑛0−3 + 𝑎𝛾2𝑛0−2
= 0,

(22)

which leads a contradiction. While if 𝜙(𝜉) is oscillatory as 𝜉 → +∞, we can find a sequence
{

𝜉𝑛
}+∞
𝑛=0 of the minimal points of 𝜙(𝜉),

with 𝜉𝑛 → +∞ as 𝑛→ +∞, such that

lim
𝑛→+∞

𝜙(𝜉𝑛) = 𝛾2𝑛0−1 and 𝜙′(𝜉𝑛) = 0.
Deriving (21) once again leads to a contradiction with (22). Moreover, we can also similarly tackle another case 𝜙+ = 𝛾2𝑛0 since

lim sup
𝑛→+∞

𝑓 (𝜙, 𝜓) (𝜉𝑛) ≤ 𝑓
(

𝛾2𝑛0 , 𝛾2𝑛0−1
)

< (1 − 𝛾2𝑛0 )
( 𝛾2𝑛0

𝑏
− 1

)

−
𝑚𝛾2𝑛0−1

𝛾2𝑛0−2 + 𝑎𝛾2𝑛0−1
= 0.

Hence we must have 𝑛0 = +∞, which implies that (𝜙, 𝜓)(+∞) = (𝑢∗2 , 𝑢∗2) and finishes this proof. □

4. The existence of traveling waves for 𝒄 = 𝒄∗

This section is devoted to the existence of traveling waves of (2) for 𝑐 = 𝑐∗, which depends on a limiting argument. Let us begin
with the following result.

Lemma 4.1. For 𝑐 > 𝑐∗, the solution (𝜙, 𝜓)(𝜉) of (4)–(5) satisfies

lim
𝜉→−∞

𝜓 ′(𝜉)
𝜓(𝜉)

= 𝜆 ∈
{

𝜆1, 𝜆2
}

,

where 𝜆1 and 𝜆2 are given in Lemma 1.1.

Proof. From Theorem 3.1, we have 𝜓(𝜉) > 0 over R. Let

𝑍(𝜉) = 𝜓 ′(𝜉)
𝜓(𝜉)

and 𝐵(𝜉) = 𝑔(𝜙, 𝜓)(𝜉) − 𝑑2.

Note that
𝜓(𝜉 − 𝑦)
𝜓(𝜉)

= 𝑒ln𝜓(𝜉−𝑦)−ln𝜓(𝜉) = 𝑒∫
𝜉−𝑦
𝜉

𝜓′(𝑠)
𝜓(𝑠) 𝑑 𝑠 = 𝑒∫

𝜉−𝑦
𝜉 𝑍(𝑠)𝑑 𝑠,

then 𝜓(𝜉)-equation gives

𝑐 𝑍(𝜉) =𝑑2 ∫R
𝐽2(𝑦)

(

𝜓(𝜉 − 𝑦)
𝜓(𝜉)

)

𝑑 𝑦 − 𝑑2 + 𝑔(𝜙, 𝜓)(𝜉)

=𝑑2 ∫R
𝐽2(𝑦)𝑒

∫ 𝜉−𝑦𝜉 𝑍(𝑠)𝑑 𝑠𝑑 𝑦 + 𝐵(𝜉).

Since (𝜙, 𝜓)(−∞) = (1, 0), we have

𝐵(−∞) = 𝑔(−∞) − 𝑑2 = 𝑠
(

1 − 𝜓(−∞)
𝜙(−∞)

)

− 𝑑2 = 𝑠 − 𝑑2.

By Lemma A.1, we know that 𝜆 ∶= lim𝜉→−∞𝑍(𝜉) exists and satisfies

𝑐 𝜆 = 𝑑2

(

∫R
𝐽2(𝑦)𝑒−𝜆𝑦𝑑 𝑦 − 1

)

+ 𝑠.

Following Lemma 1.1, we conclude this proof. □

Now, we present the existence result on traveling wave with 𝑐 = 𝑐∗.

Theorem 4.1. Under (7) and 𝑏 ∈ (0, 1), (2) has a traveling wave connecting (1, 0) and (𝑢∗2 , 𝑢∗2) for 𝑐 = 𝑐∗.

Proof. We choose a strictly decreasing sequence
{

𝑐𝑛
}+∞
𝑛=0 with 𝑐𝑛 ∈ (𝑐∗, 𝑐∗ + 1) and lim𝑛→+∞ 𝑐𝑛 = 𝑐∗. Thus, for each 𝑐𝑛, there exists

a positive solution (𝜙𝑛, 𝜓𝑛)(𝜉) of (4)–(5), and from the above lemma, we have 𝜓 ′
𝑛(𝜉) > 0 for 𝜉 ≪ −1 since 𝜓𝑛(𝜉) > 0 over R.

Furthermore, for any 𝑎 ∈ R, because (𝜙𝑛, 𝜓𝑛)(𝜉 + 𝑎) is also the solution of (4)–(5), we assume that there exists a positive constant
𝛿 < min

{

(1 + 𝑏)∕8, 𝑢∗1∕2
}

such that 𝜓𝑛(0) = 𝛿 and 𝜓𝑛(𝜉) ≤ 𝛿 for 𝜉 < 0. It follows from Theorem 3.1 that (1 + 𝑏)∕2 < 𝜙𝑛(𝜉) < 1 and
< 𝜓𝑛(𝜉) < 1 over R, then 𝜙′

𝑛(𝜉) and 𝜓 ′
𝑛(𝜉) are uniformly bounded over R, implying that 𝜙𝑛(𝜉) and 𝜓𝑛(𝜉) are equicontinuous. From

J2), we have
|

|

𝑑 𝐽1(𝜉 − 𝑦)𝜙𝑛(𝑦)d𝑦
|

| =
|

|

𝑑 𝐽1(𝜉 − 𝑦)𝜙𝑛(𝑦)d𝑦
|

| ⩽ |

|𝐽 ′(𝑦)|| 𝑑 𝑦,

|

|
𝑑 𝜉 ∫R |

|

|

|

∫R 𝑑 𝜉 |

|

∫R |

1
|
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|

|

|

|

𝑑
𝑑 𝜉 ∫R

𝐽2(𝜉 − 𝑦)𝜓𝑛(𝑦)d𝑦
|

|

|

|

=
|

|

|

|

∫R
𝑑
𝑑 𝜉 𝐽2(𝜉 − 𝑦)𝜓𝑛(𝑦)d𝑦

|

|

|

|

⩽ ∫R
|

|

|

𝐽 ′
2(𝑦)

|

|

|

𝑑 𝑦.

By calculating derivative on 𝜉 in (4), 𝜙′′
𝑛 (𝜉) and 𝜓 ′′

𝑛 (𝜉) are uniformly bounded over R, then 𝜙′
𝑛(𝜉) and 𝜓 ′

𝑛(𝜉) are equicontinuous. Hence,
by Arzela–Ascoli theorem, up to extracting a subsequence, there exist functions 𝜙(𝜉) and 𝜓(𝜉) such that (𝜙𝑛, 𝜓𝑛)(𝜉) and (𝜙′

𝑛, 𝜓 ′
𝑛)(𝜉)

converge uniformly to (𝜙, 𝜓)(𝜉) and (𝜙′, 𝜓 ′)(𝜉) on every bounded interval and point-wise over R. Additionally, the dominated
onvergence theorem yields that

∫R
𝐽1(𝜉 − 𝑦)𝜙𝑛(𝑦)d𝑦→ ∫R

𝐽1(𝜉 − 𝑦)𝜙(𝑦)d𝑦 as 𝑛→ +∞,

∫R
𝐽2(𝜉 − 𝑦)𝜓𝑛(𝑦)d𝑦→ ∫R

𝐽2(𝜉 − 𝑦)𝜓(𝑦)d𝑦 as 𝑛→ +∞.

Therefore, (𝜙, 𝜓)(𝜉) is a solution of (4) with 𝑐 = 𝑐∗ by letting 𝑛 → +∞ in (4) with (𝜙, 𝜓)(𝜉) = (𝜙𝑛, 𝜓𝑛)(𝜉). Simultaneously, we also
have (1 + 𝑏)∕2 ≤ 𝜙(𝜉) ≤ 1 and 0 ≤ 𝜓(𝜉) ≤ 1 over R. Following the proof in Theorem 3.1, we still obtain that (1 + 𝑏)∕2 < 𝜙(𝜉) < 1 and
0 < 𝜓(𝜉) < 1 over R.

It is worth emphasizing that the proofs of Lemma 3.3, Lemma 3.4 and Theorem 3.2 are completely independent of the variable
𝑐, then (𝜙, 𝜓)(+∞) = (𝑢∗2 , 𝑢∗2) still holds. Therefore, what we need to do is to prove (𝜙, 𝜓)(−∞) = (1, 0). Naturally, we define

𝜙 = lim sup
𝜉→−∞

𝜙(𝜉), 𝜙 = lim inf
𝜉→−∞

𝜙(𝜉),

𝜓 = lim sup
𝜉→−∞

𝜓(𝜉), 𝜓 = lim inf
𝜉→−∞

𝜓(𝜉).

Inspired by [18], we split our proof into the following two cases.
Case 1. 𝜙 = 𝜙. In this case, we seek to demonstrate that 𝜓(−∞) indeed exists and is equal to 0. Actually, assume that 𝜓 < 𝜓 ,

there exist two sequences
{

𝑥𝑛
}+∞
𝑛=0 and

{

𝑦𝑛
}+∞
𝑛=0 satisfying 𝑥𝑛, 𝑦𝑛 → −∞ as 𝑛→ +∞ such that

lim
𝑛→+∞

𝜓(𝑥𝑛) = 𝜓 and lim
𝑛→+∞

𝜓(𝑦𝑛) = 𝜓 .

From Lemma A.2, we have 𝜙′(−∞) = 0 since 𝜙(−∞) exists. Using Lemma A.3, for any sequence
{

𝜏𝑛
}+∞
𝑛=0 with 𝜏𝑛 → −∞ as 𝑛 → +∞,

we get

lim
𝑛→+∞

1[𝜙](𝜏𝑛) = 0.

Selecting
{

𝜏𝑛
}+∞
𝑛=0 as

{

𝑥𝑛
}+∞
𝑛=0 and

{

𝑦𝑛
}+∞
𝑛=0 respectively, and letting 𝑛→ +∞, we arrive at

𝜙(−∞)𝑓
(

𝜙(−∞), 𝜓
)

= 0 and 𝜙(−∞)𝑓
(

𝜙(−∞), 𝜓
)

= 0.
Since 𝜙(𝜉) ≥ (1 + 𝑏)∕2 over R, we must have

𝑓
(

𝜙(−∞), 𝜓
)

= 𝑓
(

𝜙(−∞), 𝜓
)

= 0.
From the expression of 𝑓 (𝜙, 𝜓), automatically, we get

𝑚𝜓

𝜙(−∞) + 𝑎𝜓 =
𝑚𝜓

𝜙(−∞) + 𝑎𝜓 ,

which yields that 𝜓 = 𝜓 and 𝜓(−∞) exists. From Lemma A.2, we have 𝜓 ′(−∞) = 0. Similarly, for any sequence
{

𝜏𝑛
}+∞
𝑛=0 with

𝑛 → −∞ as 𝑛→ +∞,

lim
𝑛→+∞

2[𝜓](𝜏𝑛) = 0.

Hence, we have

𝜙(−∞)𝑓 (𝜙(−∞), 𝜓(−∞)) = 0 and 𝜓(−∞)𝑔 (𝜙(−∞), 𝜓(−∞)) = 0.
Thus, (𝜙(−∞), 𝜓(−∞)) might converge to

(𝑏, 0), (1, 0), (𝑢∗1 , 𝑢∗1) or (𝑢∗2 , 𝑢∗2).
Since 𝛿 < 𝑢∗1∕2 and 𝜙(𝜉) ≥ (1 + 𝑏)∕2, we have (𝜙(−∞), 𝜓(−∞)) = (1, 0).

Case 2. 𝜙 ≠ 𝜙. We claim that 𝜓(−∞) = 0. Otherwise, there exist 𝜁 ∈ (0, 𝛿) such that

lim sup
𝜉→−∞

𝜓(𝜉) = 𝜁 . (23)

Up to extracting a subsequence, there exists a sequence
{

𝓁𝑛
}+∞
𝑛=0, with 𝓁𝑛 → −∞ as 𝑛→ +∞, such that

𝜓(𝓁𝑛) >
𝜁
2

for all 𝑛.

From the uniform continuity of 𝜓(𝜉), we have for an appropriate 𝜖1 > 0
14 
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𝜓(𝓁𝑛 + 𝜉) >
𝜁
4

for 𝜉 ∈ (−𝜖1, 𝜖1).
Now, we consider initial value problem

⎧

⎪

⎨

⎪

⎩

𝜑𝑡 = 𝑑22[𝜑](𝑥, 𝑡) + 𝑠𝜑
(

1 − 2𝜑
1 + 𝑏

)

,

𝜑(𝑥, 0) = 𝜑(𝑥),

where 𝜑(𝑥) satisfies the following conditions:

(1) 𝜑(𝑥) is uniformly continuous on 𝑥,

(2) 𝜑(𝑥) = 𝜁∕4 for 𝑥 ∈ [−𝜖1∕2, 𝜖1∕2],
(3) 𝜑(𝑥) is decreasing for 𝑥 ∈ [𝜖1∕2, 𝜖1] and increasing for 𝑥 ∈ [−𝜖1∕2,−𝜖1],
(4) 𝜑(𝑥) = 0 for |𝑥| > 𝜖1.
Spreading speed theory [35] gives for 𝑐 ∈ (0, 𝑐∗)

lim inf
𝑡→+∞

inf
|𝑥|<𝑐 𝑡𝜑(𝑥, 𝑡) =

1 + 𝑏
2

.

Thanks to 𝛿 < (1 + 𝑏)∕8, there exists a constant 𝑇 > 0 such that for 𝑐 ∈ (0, 𝑐∗)
inf

|𝑥|<𝑐 𝑡𝜑(𝑥, 𝑡) > 2𝛿 .

For the above 𝑇 , we further choose two subsequences
{

𝓁1𝑛
}+∞
𝑛=0 and

{

𝓁2𝑛
}+∞
𝑛=0 satisfying for all 𝑛

𝓁1𝑛 − 𝓁2𝑛 > 𝑐∗𝑇 , 𝜓(𝓁1𝑛) >
𝜁
2

and 𝜓(𝓁2𝑛) >
𝜁
2
.

From 𝜓-equation, the function 𝑤(𝑥, 𝑡) ∶= 𝜓(𝑥 + 𝑐∗𝑡 + 𝓁2𝑛) satisfies
⎧

⎪

⎨

⎪

⎩

𝑤𝑡 ≥ 𝑑22[𝑤](𝑥, 𝑡) + 𝑠𝑤
(

1 − 2𝑤
1 + 𝑏

)

,

𝑤(𝑥, 0) = 𝜓(𝑥 + 𝓁2𝑛).

By the comparison principle [35], we have for 𝑐 ∈ (0, 𝑐∗)
lim inf
𝑡→+∞

inf
|𝑥|<𝑐 𝑡𝑤(𝑥, 𝑡) ≥ lim inf

𝑡→+∞
inf

|𝑥|<𝑐 𝑡𝜑(𝑥, 𝑡) = (1 + 𝑏)∕2.

Now, we fix 𝑥 = 0 and 𝑡 = (𝓁1𝑛 − 𝓁2𝑛)∕𝑐∗, obviously, |𝑥| < 𝑐 𝑡 for 𝑐 ∈ (0, 𝑐∗). Then for 𝑡 > 𝑇
𝑤(0, 𝑡) = 𝑤(0, (𝓁1𝑛 − 𝓁2𝑛)∕𝑐∗) = 𝜓(𝓁1𝑛) > 𝜑(0, 𝑡) > 2𝛿 > 𝜁

by the choice of 𝜁 . Hence we obtain

lim sup
𝜉→−∞

𝜓(𝜉) > 𝜁 ,

which contradicts to (23). Therefore, we have 𝜓(−∞) = 0. Under the condition 𝜙 ≠ 𝜙, there exist sequences
{

𝑥𝑛
}+∞
𝑛=0 and

{

𝑦𝑛
}+∞
𝑛=0,

with 𝑥𝑛 and 𝑦𝑛 → −∞ as 𝑛→ +∞, such that

lim
𝑛→+∞

𝜙(𝑥𝑛) = 𝜙 and 𝜙′(𝑥𝑛) = 0,
lim
𝑛→+∞

𝜙(𝑦𝑛) = 𝜙 and 𝜙′(𝑦𝑛) = 0.
From Lemma A.3, taking 𝜉 = 𝑥𝑛 or 𝜉 = 𝑦𝑛 in 𝜙-equation, and letting 𝑛→ +∞, we have

𝜙
(

1 − 𝜙
)

(

𝜙

𝑏
− 1

)

≤ 0,

𝜙
(

1 − 𝜙
)

(

𝜙
𝑏
− 1

)

≥ 0.

Since 𝜙 > 𝜙 ≥ (1 + 𝑏)∕2, we have 𝜙 < 𝜙 ≤ 1 ≤ 𝜙, which suggests that 𝜙 ≠ 𝜙 cannot occur.
Therefore, this proof is finalized by combining Case 1 with Case 2. □

Finally, let us finish the proof of Theorem 1.1 by demonstrating the non-existence of traveling waves with 0 < 𝑐 < 𝑐∗.

Theorem 4.2. For 0 < 𝑐 < 𝑐∗, (2) has no traveling waves connecting (1, 0) and (𝑢∗2 , 𝑢∗2).

Proof. By contradiction, we assume that there exists a positive solution (𝜙, 𝜓)(𝜉) of (4)–(5) for given 0 < 𝑐0 < 𝑐∗. Through the
boundary conditions (5), we have 𝜙(𝜉) ≥ 1∕𝐾 over R for some 𝐾 ≫ 1. Let 𝑤(𝑥, 𝑡) ∶= 𝜓(𝑥 + 𝑐 𝑡), from 𝜓-equation, we get
0

15 
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s
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{

𝑤𝑡 ≥ 𝑑22[𝑤](𝑥, 𝑡) + 𝑠𝑤(𝑥, 𝑡) (1 −𝐾 𝑤(𝑥, 𝑡)) ,
𝑤(0, 𝑥) = 𝜓(𝑥).

Spreading speed theory and the comparison principle [35] give

lim
𝑡→+∞

inf
2|𝑥|=(𝑐0+𝑐∗)𝑡

𝑤(𝑥, 𝑡) ≥ 1
𝐾
.

As 2𝑥 = −(𝑐0 + 𝑐∗)𝑡, we have

𝑤(𝑥, 𝑡) = 𝜓(𝑥 + 𝑐0𝑡) = 𝜓
(

−
(𝑐0 + 𝑐∗)𝑡

2
+ 𝑐0𝑡

)

= 𝜓
(

(𝑐0 − 𝑐∗)𝑡
2

)

≥ 1
𝐾
,

which contradicts to 𝜓(−∞) = 0. Therefore, we complete the proof. □
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Appendix

The appendix contains crucial lemmas used throughout this paper.

Lemma A.1 ([36]). Assume 𝑐 > 0 and 𝐵(𝜉) is a continuous function with 𝐵(±∞) ∶= lim𝜉→±∞ 𝐵(𝜉). Let 𝑍(𝜉) be a measurable function
atisfying

𝑐 𝑍(𝜉) = ∫R
𝐽𝑖(𝑦)𝑒

∫ 𝜉−𝑦𝜉 𝑍(𝑠)𝑑 𝑠𝑑 𝑦 + 𝐵(𝜉) in R, 𝑖 = 1, 2.

Then, 𝑍(𝜉) is uniformly continuous and bounded. Moreover, 𝜇± ∶= lim𝜉→±∞𝑍(𝜉) exist and are real roots of the characteristic equation

𝑐 𝜇± = ∫R
𝐽𝑖(𝑦)𝑒−(𝜇±)𝑦𝑑 𝑦 + 𝐵(±∞), 𝑖 = 1, 2.

Lemma A.2 ([37]). Assume that 𝑤(𝜉) ∈ 𝐶1(𝑏,+∞) and lim𝜉→+∞𝑤(𝜉) exists. If 𝑤′(𝜉) is uniformly continuous, then lim𝜉→+∞𝑤′(𝜉) = 0.

Lemma A.3 ([38]). Assume that 𝐽 (𝜉) ≥ 0 and ∫R 𝐽 (𝜉)𝑑 𝜉 = 1, and 𝜔(𝜉) is a nonnegative bounded continuous function on R. Then we have

lim inf
𝜉→∞ ∫R

𝐽 (𝑦)𝜔(𝜉 − 𝑦)𝑑 𝑦 ≥ lim inf
𝜉→∞

𝜔(𝜉) ∶= 𝜔−,

lim sup
𝜉→∞ ∫R

𝐽 (𝑦)𝜔(𝜉 − 𝑦)𝑑 𝑦 ≤ lim sup
𝜉→∞

𝜔(𝜉) ∶= 𝜔+.

In particular, if 𝜔(∞) exists, that is, 𝜔− = 𝜔+ = 𝜔(∞), then

lim
𝜉→∞∫R

𝐽 (𝑦)𝜔(𝜉 − 𝑦)𝑑 𝑦 = 𝜔(∞).

Data availability

The data that supports the findings of this study are available within the article.
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