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The Spreading Speed and the Existence of Planar Waves for a Class of

Predator-prey System with Nonlocal Diffusion

Min Zhao*, Zhaohai Ma and Rong Yuan

Abstract. In this paper, we study a predator-prey system with general response func-

tion and nonlocal diffusion in high dimensional space and investigate the propagation

properties of its solution. More precisely, we study the invasion speed of the preda-

tor into habitat of the aborigine prey and obtain the existence of the planar waves

by constructing the upper and lower solutions. Finally, we present some numerical

simulations to support our results.

1. Introduction

In recent years, some nonlocal diffusion population dynamics models have been estab-

lished in order to interpret spatial variation of interactions between different populations,

see [5,11]. The study of dynamics of predator-prey interactions plays an important role in

the theoretical ecology [8]. Ducrot et al. [6] discussed the asymptotic speed of propagation

and minimum wave speed of a predator-prey model with Holling type I response function

in one-dimensional space. In this paper, we consider a class of predator-prey model with

general response functions, which is more corresponding with practical biological signifi-

cance. The predator-prey model with general functional response and nonlocal dispersal

in high dimensional space can be expressed as follows:

(1.1)



∂U
∂t (x, t) = d1N1[U( · , t)](x) + r1U(x, t)(1− U(x, t))

−f(U(x, t))V (x, t),

∂V
∂t (x, t) = d2N2[V ( · , t)](x) + βf(U(x, t))V (x, t)

−r2V (x, t)(1 + V (x, t)),

x ∈ RN , t > 0.

The system (1.1) is supplemented by the initial conditions:

(1.2) U(x, 0) = 1, V (x, 0) = v0(x), x ∈ RN ,
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where v0 is a nonnegative continuous function with nonempty compact support. In sys-

tem (1.1), U = U(x, t) and V = V (x, t) are the population densities of prey and predator

species at time t > 0 and the spatial position x ∈ RN , respectively. Here the dynamics of

the prey population follow a logistic growth with a normalized (to one) carrying capacity

and r1 denotes its intrinsic growth rate. f(U) is the functional response to the predator

population. The constant β is a conversion rate, r2 is the death rate of predator species,

r1 > 0, r2 > 0, and β > 0. The term diNi (i = 1, 2) describes the spatial dispersal of the

individual. Here, d1 > 0 and d2 > 0 are the diffusion coefficients for prey and predator

species, respectively. And Ni (i = 1, 2) is the linear nonlocal diffusion operators defined

by

Ni[ϕ](x) := (Ji ∗ ϕ)(x)− ϕ(x) =

∫
RN

Ji(x− y)ϕ(y) dy − ϕ(x),

where the symbol ∗ denotes the convolution product with respect to the spatial variable,

and J1, J2 are probability kernel functions satisfying the following assumptions:

Assumption 1.1. The kernel function Ji : RN → R (i = 1, 2) is a nonnegative radial

continuous function and satisfies
∫
RN Ji(x) dx = 1, Ji(x) = Ji(−x) for all x ∈ RN and

there exists λ0 ∈ (0,+∞] such that
∫
RN Ji(x)eλx1dx <∞ for any λ ∈ [0, λ0).

To address more specifically the spreading speed and planar wave solutions of the

system (1.1) with initial value conditions (1.2), we shall assume throughout this paper

that the general functional response function satisfies certain assumptions, as follows:

Assumption 1.2. The function f : [0,∞)→ [0,∞) is of class C1 and satisfies:

(H1) f(0) = 0 and f(x) > 0 for any x > 0;

(H2) f ′(x) > 0 for any x ∈ [0,+∞);

(H3) f(x)
x is continuous and monotonely nonincreasing for x > 0.

Throughout this work, we shall assume the following parameter conditions:

(1.3) βf(1) > r2, a(βf(1)− r2) < r1r2,

where a is a positive constant satisfying a ≥ f ′(0).

It is well known that local diffusion models are often used to describe the spread of

infectious diseases in space and the invasion of populations in biology. However, this lo-

cal diffusion model can only be used to describe the diffusion phenomenon near a small

area. In the actual environment, the movements of individuals are usually random and

free [3, 14]. Therefore, the nonlocal diffusion model is more realistic with the biological
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environment. In the theory of reaction-diffusion equations, asymptotic speed of propa-

gation and planar wave solutions play an important role in describing biological invasion

and disease transmission.

Many scholars have conducted a lot of research on spreading speed and traveling wave

solutions in one-dimensional space, see [3, 7, 12, 14, 17, 18]. In this paper, inspired by

the processing of kernel functions in [1, 4, 15], we mainly consider the spreading speed

and planar wave solutions of predator-prey model with nonlocal diffusion and general

response function in high-dimensional space. First, we consider the spreading speed of the

predatory into habitat of the aborigine prey for model (1.1) with initial datum (1.2). Then,

we consider the existence of the planar wave solutions which connects the predator-free

state (1, 0) with nontrivial state of the system (1.1). We will obtain that, under certain

conditions, there exists c∗ > 0 such that for c ≥ c∗, system (1.1) admits invasion planar

wave solutions with wave speed c; while for 0 < c < c∗, system (1.1) has no invasion

planar waves with wave speed c. We show that the spreading speed of the predatory is

the minimal wave speed c∗ of the invasion planar waves.

This paper is organized as follows. In the next section, we establish some preliminary

results. In Section 3, we give the proof of the spreading speed by using the comparison

principle. In Section 4, we firstly present the proof of the existence of the planar wave

solutions by constructing appropriate upper and lower solutions under the assumption of

the compactly supported for the kernel function J2. Then, we obtain the nonexistence of

the invasion planar wave solutions. Finally, we have the result that the spreading speed

of the predatory is the same as the minimal wave speed c∗. In Section 5, we present some

numerical simulations to support our results.

2. Preliminaries

Let

X = {w(x) | w(x) : RN → R is bounded and uniformly continuous}

with norm

‖w‖X = sup
x∈RN

|w(x)|,

thus (X, ‖ · ‖X) is a Banach space. The positive cone X+ is defined by

X+ = {w ∈ X : w(x) ≥ 0, ∀x ∈ RN}.

Furthermore, for any constant d > 0, let

Xd = {w ∈ X : 0 ≤ w(x) ≤ d, ∀x ∈ RN}.



384 Min Zhao, Zhaohai Ma and Rong Yuan

Set the order of the space X2 = X ×X as follows:

w ≤ w ⇐⇒ wi(x) ≤ wi(x), x ∈ RN , i = 1, 2

for any w = (w1(x), w2(x)) and w = (w1(x), w2(x)) ∈ X2.

We define the set X2
H ⊂ X2 by

X2
H = {(w1, w2) ∈ X2 : 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ α},

where α := β
r2
f(1) − 1. Our initial datum will always be chosen in this set. Here, we

point out that under Assumption 1.2, the set X2
H is positively invariant under (1.1),

therefore this system generates a strongly continuous nonlinear semiflow, denoted by S,

i.e., S = {S(t) : X2
H → X2

H}t≥0. In particular, this means that problem (1.1) with initial

conditions (1.2) admits a unique globally defined solution (U, V ) with

(U, V ) ∈ C1([0,∞), X2) and (U, V )( · , t) ∈ X2
H , ∀ t ≥ 0.

Since (U, V ) is bounded from [0,∞) into X2, it follows from (1.1) that the time deriva-

tive of (U, V ) is also bounded from [0,∞) into X2. Hence, for each given initial data

v0 ∈ Xα, the corresponding solution (U, V ) = (U, V )(x, t) of system (1.1) with (1.2) is

uniformly continuous on RN × [0,∞). Furthermore, if v0 admits a nonempty compact

support, then V (t, x) > 0 for all t > 0 and x ∈ RN .

For our purpose, we would firstly like to present a comparison principle for the following

equation with constant coefficients:

(2.1)


∂w(x,t)
∂t = dN [w( · , t)](x) + rw(x, t)(s− w(x, t)), x ∈ RN , t > 0,

w(x, 0) = χ(x), x ∈ RN ,

where N [w] := J ∗ w − w, kernel J satisfies Assumption 1.1 and the initial data χ ∈ Xs

admits a nonempty compact support. The parameters satisfy d > 0, r > 0 and s > 0.

When N = 1, Jin and Zhao [10] studied a scalar periodic logistic equation with nonlocal

diffusion and established a comparison principle. To our knowledge, a comparison principle

for general nonlocal diffusion equation in high dimensional space can not be found easily.

For reader’s convenience, we provide a proof for such equation.

Proposition 2.1. Let w be a solution of (2.1) with w( · , t) ∈ Xs for all t > 0 for a given

χ ∈ Xs. If z( · , t) ∈ Xs and z(x, t) satisfies
∂z(x,t)
∂t ≥ dN [z( · , t)](x) + rz(x, t)(s− z(x, t)), x ∈ RN , t > 0,

z(x, 0) ≥ χ(x), x ∈ RN ,

then z(x, t) ≥ w(x, t) for all x ∈ RN , t > 0. Similar result holds for the reverse inequality.
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Proof. We prove the proposition by modifying some arguments of [10, Theorem 2.3]. De-

fine κ(x, t) = z(x, t)−w(x, t) for all x ∈ RN , t > 0, and κ(t) = infx∈RN κ(x, t) for all t ≥ 0.

Clearly, κ(t) is continuous in t and κ(0) ≥ 0. We prove that κ(t) ≥ 0 for all t ≥ 0. Indeed,

by contradiction, we assume that for δ > 0, there exists t0 > 0 such that κ(t0) < 0 and

(2.2) κ(t0)e
−δt0 = min

t∈[0,t0]
κ(t)e−δt < κ(τ)e−δτ , ∀ τ ∈ [0, t0).

It follows that there exists a sequence of points {xk}∞k=1 such that κ(xk, t0) < 0 for all

k ≥ 1 and limk→∞ κ(xk, t0) = κ(t0). Let {tk}∞k=1 ⊆ [0, t0] be a sequence such that

(2.3) κ(xk, tk)e
−δtk = min

t∈[0,t0]
κ(xk, t)e

−δt.

Let mε = mint∈[0,t0−ε] κ(t)e
−δt

for any ε ∈ (0, t0). Using (2.2), we obtain

lim
k→∞

κ(xk, t0)e
−δt0 = κ(t0)e

−δt0 < mε.

Thus, there exists an integer Kε such that for all k ≥ Kε,

κ(xk, t0)e
−δt0 < mε ≤ κ(t)e−δt ≤ κ(xk, t)e

−δt, ∀ t ∈ [0, t0 − ε].

By (2.3), we have

κ(xk, tk)e
−δtk = min

t∈[0,t0]
κ(xk, t)

e−δt ≤ κ(xk, t0)e
−δt0 ,

thus, tk ∈ [t0 − ε, t0] for all k ≥ Kε. Then we deduce that limk→∞ tk = t0. Due to

κ(xk, t0)e
−δt0 ≥ κ(xk, tk)e

−δtk ≥ κ(tk)e
−δtk ≥ κ(t0)e

−δt0 ,

we get

κ(xk, t0)e
−δ(t0−tk) ≥ κ(xk, tk) ≥ κ(t0)e

−δ(t0−tk).

Letting k →∞, we have limk→∞ κ(xk, tk) = κ(t0). Then (2.3) implies that

0 ≥ ∂(κ(xk, t)e
−δt)

∂t

∣∣∣
t=t−k

= e−δtk
(
∂κ(xk, tk)

∂t
− δκ(xk, tk)

)
.

Thus
∂κ(xk, tk)

∂t
≤ δκ(xk, tk).

The function g : R→ R is denoted

g(l) := rl(s− l),

where l := l(x, t), ∀x ∈ RN , t ≥ 0. By the definition of g, for every M0 > 0, there exists

constant L > 0 such that

(2.4) |g(z)− g(w)| ≤ L|z − w|, ∀ z, w ∈ [0,M0].
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Because κ(xk, tk) < 0 and by (2.4), it follows that

∂κ(xk, tk)

∂t
=
∂z(xk, tk)

∂t
− ∂w(xk, tk)

∂t

≥ dN [κ( · , tk)](xk) + g(z(xk, tk))− g(w(xk, tk))

≥ d
[∫

RN
J(xk − y)κ(y, tk) dy − κ(xk, tk)

]
+ Lκ(xk, tk).

Then

0 ≤ ∂κ(xk, tk)

∂t
− Lκ(xk, tk)− d

[∫
RN

J(xk − y)κ(y, tk) dy − κ(xk, tk)

]
≤ (δ − L+ d)κ(xk, tk)− dκ(tk).

Letting k → ∞, we obtain 0 ≤ (δ − L)κ(t0). For δ > L, it follows that κ(t0) ≥ 0, a

contradiction. Therefore, we get κ(t) ≥ 0 for any t ≥ 0. Thus, we obtain κ(x, t) ≥ 0, i.e.,

z(x, t) ≥ w(x, t) for all x ∈ RN , t ≥ 0.

We complete the proof.

Remark 2.2. Through the proof of Proposition 2.1, we can generalize its conclusion to a

more general system:
∂w(x,t)
∂t = dN [w( · , t)](x) + w(x, t)F (w(x, t)), x ∈ RN , t > 0,

w(x, 0) = χ(x), x ∈ RN ,

where F ∈ C1(R,R), Fw < 0 for all w ∈ R, we have z(x, t) ≥ w(x, t) for all x ∈ RN , t > 0,

where z(x, t) satisfies
∂z(x,t)
∂t ≥ dN [z( · , t)](x) + z(x, t)F (z(x, t)), x ∈ RN , t > 0,

z(x, 0) ≥ χ(x), x ∈ RN .

Moreover, Jin and Zhao [10] studied the spreading speed of a scalar periodic logistic

equation with nonlocal diffusion in one-dimensional space. Diekmann [4] investigated the

spreading speed of the nonlinear integral equation of mixed Volterra–Fredholm type in

high-dimensional case. Ma [13] explored the asymptotic speed of spread of a general

nonlocal diffusion equation in n-dimensional case. Based on their research, we conclude

that system (2.1) has the following spreading speed.

Proposition 2.3. Let w be a solution of (2.1) with w( · , t) ∈ Xs for all t > 0 for a given

χ ∈ Xs and c := inf0<λ<λ0
d
[ ∫

RN J(x)eλx1 dx−1
]
+rs

λ > 0. Then the following statements are

valid.
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(i) For any c > c, if χ has a nonempty compact support, then

(2.5) lim
t→∞

sup
‖x‖>ct

w(x, t) = 0;

(ii) For any 0 < c < c, if χ(·) 6≡ 0, then

lim inf
t→∞

inf
‖x‖<ct

w(x, t) = s.

Since the kernel function J2 satisfies Assumption 1.1, we define

(2.6) c∗ := inf
0<λ<λ0

d2
[ ∫

RN J2(x)eλx1 dx− 1
]

+ βf(1)− r2
λ

.

3. Spreading speed

In this section, we will discuss the spreading speed of the predator for system (1.1) with

initial values (1.2) and establish the following theorem.

Theorem 3.1. Under the assumption (1.3), the constant c∗, defined in (2.6), corresponds

to the spreading speed of the predator for system (1.1) with initial datum (1.2) and 0 ≤
v0 ≤ α. This means that the density of the predator V = V (x, t) satisfies the following

statements.

(1) For any c > c∗, if v0 is a nonzero compactly supported continuous function, then

lim
t→∞

sup
‖x‖>ct

V (x, t) = 0;

(2) For any 0 < c < c∗, if v0(·) 6≡ 0, then

lim inf
t→∞

inf
‖x‖<ct

V (x, t) > 0.

Proof. First, we prove that

(3.1) lim
t→∞

sup
‖x‖>ct

V (x, t) = 0 for any c > c∗.

Since U ≤ 1, using (H2), we get that f(U) ≤ f(1) and the function V satisfies

∂V (x, t)

∂t
≤ d2N2[V ( · , t)](x) + βf(1)V (x, t)− r2V (x, t)(1 + V (x, t)), x ∈ RN , t > 0.

By Proposition 2.1, for all (x, t) ∈ RN × [0,∞), we have V (x, t) ≤ V (x, t), where V

satisfies
∂V (x,t)
∂t = d2N2[V ( · , t)](x) + βf(1)V (x, t)− r2V (x, t)(1 + V (x, t)), x ∈ RN , t > 0,

V (x, 0) = v0(x).
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Hence, according to (2.5) in Proposition 2.3, we obtain (3.1).

Now we prove the statement (2), namely

lim inf
t→∞

inf
‖x‖<ct

V (x, t) > 0 for any given c ∈ (0, c∗).

According to (H2) and (H3), we deduce that f(x) ≤ ax, where a ≥ f ′(0) > 0. Since

V (x, t) ≤ α, the function U satisfies

∂U(x, t)

∂t
≥ d1N1[U( · , t)](x) + U(x, t)(r1 − aα− r1U(x, t)), x ∈ RN , t > 0.

Hence, according to the second condition in (1.3), i.e., a(βf(1)−r2) < r1r2 and U(x, 0) = 1,

we derive from Proposition 2.1 that

(3.2) U(x, t) ≥ Umin := 1− a

r1r2
(βf(1)− r2), ∀x ∈ RN , t ≥ 0.

Also using (3.2), U ≤ 1 and (H2), the function U satisfies

∂U(x, t)

∂t
≥ d1N1[U( · , t)](x) + r1Umin(1− U(x, t))− f(1)V (x, t), x ∈ RN , t > 0.

Because U(x, 0) = 1, the function 1− U(x, t) satisfies

(3.3) 1−U(x, t) ≤ u(x, t) := f(1)

∫ t

0
exp(−r1Umin(t−s)) exp((t−s)d1N1)[V ( · , s)](x) ds

for all x ∈ RN , t ≥ 0. By (H3), we deduce that f(U) ≥ −f(1)u + f(1). Plugging (3.3)

into the V -equation in (1.1) yields

∂V (x, t)

∂t
≥ d2N2[V ( · , t)](x)

+ V (x, t)[−βf(1)u(x, t)− r2V (x, t)− r2 + βf(1)], x ∈ RN , t > 0.

(3.4)

Let ε ∈ (0, c∗) be given, δ0 > 0 small enough and δ0 < βf(1)− r2 such that

inf
0<λ<λ0

d2
[ ∫

RN J2(x)eλx1 dx− 1
]

+ βf(1)− r2 − δ0
λ

> c∗ − ε.

Next, we claim there exist M > 0 and τ > 0 large enough such that

(3.5) βf(1)u(x, t) ≤ δ0 +MV (x, t), x ∈ RN , t ≥ τ.

Indeed, to prove the claim, it suffices to show that there exists some constant M > 0

such that, for any t ≥ τ and x ∈ RN , we have

(3.6) βf(1)u(x, t) ≥ δ0 =⇒ βf(1)u(x, t) ≤ δ0 +MV (x, t).
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To the aim, we consider the strongly positive semigroup {T (t)}t≥0, where

T (t) := exp(td1N1), t ≥ 0.

According to [9], we know that the solution W of the problem

∂w(x, t)

∂t
= d1{[J1 ∗ w( · , t)](x)− w(x, t)}, t > 0 with w( · , 0) = δ1,

where δ1 denotes the Dirac mass at x = 0, can be decomposed as

W (x, t) = e−d1tδ1(x) +K(x, t), x ∈ RN , t ≥ 0,

where K is a nonnegative smooth function satisfying the estimate

(3.7)

∫
RN

K(x, t) dx ≤ 2, ∀ t ≥ 0.

Thus, the semigroup {T (t)}t≥0 can be expressed as

T (t)[ϕ](x) = e−d1tϕ(x) +

∫
RN

K(x− y, t)ϕ(y) dy, ∀ t ≥ 0, ϕ ∈ X.

Using the above formula for T (t), the function βf(1)u(x, t) can be decomposed as βf(1)

u(x, t) = W1(x, t) +W2(x, t), where

W1(x, t) := aβf(1)

∫ t

0
e−β1(t−s)V (x, s) ds, β1 := d1 + r1Umin > 0,

W2(x, t) := aβf(1)

∫ t

0

∫
RN

e−β2(t−s)K(x− y, t− s)V (y, s) dyds, β2 := r1Umin > 0.

Since δ0 > 0 is fixed, there exists τ > 0 large enough such that

(3.8) aβf(1)α

∫ t−τ

0
e−β1(t−s) ds ≤ δ0

4
, 2aβf(1)α

∫ t−τ

0
e−β2(t−s) ds ≤ δ0

4
, ∀ t ≥ τ.

In order to prove (3.6), we consider t0 ≥ τ and x0 ∈ RN with βf(1)u(x0, t0) ≥ δ0. First,

since V ≤ α, from (3.7), it follows that

δ0 ≤ βf(1)u(x0, t0) ≤ aβf(1)α

∫ t0−τ

0
e−β1(t0−s) ds+ 2aβf(1)α

∫ t0−τ

0
e−β2(t0−s) ds

+ aβf(1)

∫ t0

t0−τ
e−β1(t0−s)V (x0, s) ds

+ aβf(1)

∫ t0

t0−τ

∫
RN

e−β2(t0−s)K(x0 − y, t0 − s)V (y, s) dyds.

(3.9)

This combined with (3.8), yields

aβf(1)

∫ τ

0
e−β1lV (x0, t0 − l) dl + aβf(1)

∫ τ

0

∫
RN

e−β2lK(y, l)V (x0 − y, t0 − l) dydl ≥ δ0
2
.
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Next, choose r > 0 large enough such that

aβf(1)α

∫ τ

0

∫
‖y‖≥r

e−β2lK(y, l) dydl ≤ δ0
4
.

According to V ≤ α, it follows that

aβf(1)

∫ τ

0
e−β1lV (x0, t0− l) dl+aβf(1)

∫ τ

0

∫
‖y‖≤r

e−β2lK(y, l)V (x0− y, t0− l) dydl ≥ δ0
4
.

Let η > 0 small enough such that

aβf(1)α

[∫ η

0
e−β1l dl +

∫ η

0

∫
‖y‖≤r

e−β2lK(y, l) dydl

]
≤ δ0

8
.

Thus, using the same argument as above, it follows that

aβf(1)

∫ τ

η
e−β1lV (x0, t0− l) dl+aβf(1)

∫ τ

η

∫
‖y‖≤r

e−β2lK(y, l)V (x0− y, t0− l) dydl ≥ δ0
8
.

Setting θ > 0 by

δ0
8

= θ

[
aβf(1)

∫ τ

η
e−β1l dl + aβf(1)

∫ τ

η

∫
‖y‖≤r

e−β2lK(y, l) dydl

]
,

it follows that there are l0 ∈ [t0 − τ, t0 − η] and y0 ∈ Br(x0) such that V (y0, l0) ≥ θ.

Furthermore, since the function V is uniformly continuous on RN × [0,∞), there exists

ρ > 0 independent of (y0, l0) such that

V (y, l0) ≥
θ

2
, ∀ y ∈ Bρ(y0),

where B represents the closure of B. Finally, we define a uniformly continuous function

Z0 ≤ θ
2 in R such that

Z0(x) =
θ

2
, ∀x ∈ B ρ

2
(0), Z0(x) = 0, ∀x ∈ RN \Bρ(0).

Clearly, the function V satisfies

∂V (x, t)

∂t
≥ d2N2[V ( · , t)](x)− r2(1 + α)V (x, t), x ∈ RN , t > 0.

Since Z0(x) ≤ V (y0 + x, l0), according to the comparison principle, we obtain

Z(x, t) ≤ V (y0 + x, l0 + t), ∀x ∈ RN , t ≥ 0,

where Z( · , t) = er2(1+α)t exp(td2N2)[Z0](·). Clearly Z(x, t) > 0 for all x ∈ RN , t > 0.

Thus, we get that

V (x0, t0) ≥ Z(x0 − y0, t0 − l0) ≥ γ := min
x∈Br(0), t∈[η,τ ]

Z(x, t) > 0.
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Then, using (3.7), (3.8), (3.9) and V ≤ α, we have that

βf(1)u(x0, t0) <
δ0
2

+ 3aβf(1)ατ ≤ δ0 +MV (x0, t0),

where we set M = 3γ−1aβf(1)ατ > 0. Clearly, M is independent of (x0, t0). This

completes the proof of the claim.

Inserting (3.5) into (3.4) yields

∂V (x, t)

∂t
≥ d2N2[V ( · , t)](x) +V (x, t)[βf(1)− r2− δ0− (r2 +M)V (x, t)], x ∈ RN , t > τ.

According to the comparison principle, it follows that V (x, t+τ) ≥ V (x, t) for any x ∈ RN ,

t ≥ 0, where the function V is a solution of the scalar logistic equation
∂V (x,t)
∂t = d2N2[V ( · , t)](x)

+V (x, t)[βf(1)− r2 − δ0 − (r2 +M)V (x, t)], x ∈ RN , t > τ,

V (x, 0) ≤ V (x, τ).

Then, because ε > 0 is small enough and Proposition 2.3(ii), we obtain that

lim inf
t→∞

inf
‖x‖<(c∗−ε)t

V (x, t) ≥ lim inf
t→∞

inf
‖x‖<(c∗−ε)t

V (x, t) =
βf(1)− r2 − δ0

r2 +M
> 0.

This completes the proof.

4. Planar wave solutions and minimal wave speed

In this section, we mainly investigate the planar wave solutions for system (1.1) connecting

the predator-free state to a nontrivial state. In Section 4.1, we give a general result. We

prove the existence of planar wave solutions for system (1.1) if c ≥ c∗ in Section 4.2.

In Section 4.3, we show the nonexistence of planar wave solutions for system (1.1) if

c ∈ (0, c∗). In Section 4.4, we explain that the spreading speed of the predatory in

Theorem 3.1 is the minimal wave speed c∗.

4.1. A general result

In this subsection, we give a general result about the planar wave solutions of system (1.1)

with (1.2). A solution (U, V ) to (1.1) is called a planar wave solutions of (1.1), if there

exists a function pair (Φ,Ψ), the wave profile, such that (U, V )(x, t) = (Φ,Ψ)(ξ), ξ := ν ·x+

ct, where c is a nonnegative constant, ν ∈ RN is a fixed unit vector and x ·ν =
∑N

j=1 xjνj .

Here, we focus on the planar waves connecting the predator-free state (1, 0) at ξ = −∞
to a nontrivial state at ξ =∞ in the sense that

(4.1) lim inf
ξ→∞

Φ(ξ) > 0, lim inf
ξ→∞

Ψ(ξ) > 0.
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In fact, the “nontrivial state” at ξ =∞ defined in the sense of (4.1) only means that

the right tail of the planar wave is far from zero. It is difficult to describe the exact

nontrivial state of the system due to the lack of comparison principle and the nonlocal

diffusion of the system.

We make the following transformation:

u(x, t) = 1− U(x, t), v(x, t) = V (x, t), a =
a

r1
.

With these notations, system (1.1) is rewritten as

(4.2)

∂u
∂t (x, t) = d1N1[u( · , t)](x)− r1u(x, t)[1− u(x, t)] + f(1− u(x, t))v(x, t),

∂v
∂t (x, t) = d2N2[v( · , t)](x) + r2v(x, t)[βf(1− u(x, t))− 1− v(x, t)].

At this time condition (1.3) becomes

βf(1) > 1, a(βf(1)− 1) < 1.

To find a planar wave solutions of (1.1) is equivalent to finding a solution for sys-

tem (4.2) in the form

u(x, t) = φ(ξ), v(x, t) = ψ(ξ), where ξ := ν · x+ ct

such that (φ, ψ)(−∞) = (0, 0) and

(4.3) lim sup
ξ→∞

φ(ξ) < 1, lim inf
ξ→∞

ψ(ξ) > 0.

Since ν is a unit vector, we can rotate the coordinates so that ν = (1, 0, . . . , 0) in the

new coordinates. Due to the kernel function is a radial function, thus (φ(ξ), ψ(ξ)) satisfies

the following ordinary differential equation independently of the unit vector ν:

(4.4)

cφ′(ξ) = d1Ñ1[φ](ξ)− r1φ(ξ)[1− φ(ξ)] + f(1− φ(ξ))ψ(ξ),

cψ′(ξ) = d2Ñ2[ψ](ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)],

where the linear operators Ñi are defined by

Ñi[ϕ](ξ) :=

∫
R
J̃i(x1)ϕ(ξ − x1) dx1 − ϕ(ξ), i = 1, 2,

and

J̃i(x1) :=

∫
RN−1

Ji(x1, x2, . . . , xN ) dx2 · · · dxN , i = 1, 2.

Thus, according to the definition of Ni, Ñi (i = 1, 2) and (2.6), we have

c∗ = inf
0<λ<λ0

d2
[ ∫

R J̃2(x1)e
λx1 dx1 − 1

]
+ βf(1)− r2

λ
.

We begin with the following definition.
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Definition 4.1. A pair of functions (φ, ψ), (φ, ψ) ∈ X2
h is called a pair of super and sub

solutions of (4.4) if (φ, ψ) ≤ (φ, ψ) for all ξ ∈ R and the following inequalities

cφ
′
(ξ) ≥ d1Ñ1[φ](ξ)− r1φ(ξ)[1− φ(ξ)] + f(1− φ(ξ))ψ(ξ),(4.5)

cψ
′
(ξ) ≥ d2Ñ2[ψ](ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)],(4.6)

cφ′(ξ) ≤ d1Ñ1[φ](ξ)− r1φ(ξ)[1− φ(ξ)] + f(1− φ(ξ))ψ(ξ),(4.7)

cψ′(ξ) ≤ d2Ñ2[ψ](ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)](4.8)

hold for all ξ ∈ R \E, where E denotes some finite set E ⊂ R and X2
h := X1 ×Xα, where

α := βf(1)− 1.

Lemma 4.2. Let c > 0 be given. Let (φ, ψ), (φ, ψ) be a pair of super and sub solutions

of (4.4). Then, system (4.4) admits a unique solution (φ, ψ) such that

(φ(ξ), ψ(ξ)) ≤ (φ(ξ), ψ(ξ)) ≤ (φ(ξ), ψ(ξ)), ξ ∈ R.

Proof. For each (φ, ψ) ∈ X2
h, we define the nonlinear operators F1, F2 on X2

h by

F1(φ, ψ)(ξ) := M1φ(ξ) + d1Ñ1[φ](ξ) + f1(φ, ψ)(ξ),

F2(φ, ψ)(ξ) := M1ψ(ξ) + d2Ñ2[ψ](ξ) + f2(φ, ψ)(ξ),

where

f1(φ, ψ)(ξ) := −r1φ(ξ)[1− φ(ξ)] + f(1− φ(ξ))ψ(ξ),

f2(φ, ψ)(ξ) := r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)].

Here, M1 denotes some large positive constant such that F1 and F2 satisfy proper mono-

tonicity in φ and ψ, respectively. With these notions, let P = (P1, P2) : X2
h → X2 be

P1(φ, ψ)(ξ) :=
1

c

∫ ξ

−∞
e−

M1(ξ−s)
c F1(φ, ψ)(s) ds,

P2(φ, ψ)(ξ) :=
1

c

∫ ξ

−∞
e−

M1(ξ−s)
c F2(φ, ψ)(s) ds.

Let µ > 0 be a small constant. Denote

Bµ(R,R2) :=

{
(φ, ψ) ∈ X2 : |(φ, ψ)|µ := sup

ξ∈R
max(|φ(ξ)|, |ψ(ξ)|)e−µ|ξ| <∞

}
.

Then, (Bµ(R,R2), | · |µ) is a Banach space. Define

Γ := {(φ, ψ) ∈ X2
h : (φ, ψ) ≤ (φ, ψ) ≤ (φ, ψ)}.
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Thus, Γ is a nonempty convex, closed and bounded with respect to the norm | · |µ.

Since f1(φ, ψ) is monotone increasing in ψ and f2(φ, ψ) is monotone decreasing in φ,

we have

F1(φ, ψ)(ξ) ≥M1φ(ξ) + d1Ñ1[φ](ξ) + f1(φ, ψ)(ξ) =: F 1,

F1(φ, ψ)(ξ) ≤M1φ(ξ) + d1Ñ1[φ](ξ) + f1(φ, ψ)(ξ) =: F 1,

F2(φ, ψ)(ξ) ≥M1ψ(ξ) + d2Ñ2[ψ](ξ) + f2(φ, ψ)(ξ) =: F 2,

F2(φ, ψ)(ξ) ≤M1ψ(ξ) + d2Ñ2[ψ](ξ) + f2(φ, ψ)(ξ) =: F 2.

Let

P 1(ξ) :=
1

c

∫ ξ

−∞
e−

M1(ξ−s)
c F 1(s) ds, P 1(ξ) :=

1

c

∫ ξ

−∞
e−

M1(ξ−s)
c F 1(s) ds, ξ ∈ R.

Then it suffices to prove that

φ(ξ) ≤ P 1(ξ) ≤ P 1(ξ) ≤ φ(ξ), ξ ∈ R.

Indeed, let

E = {E1, E2, . . . , En},

and denote E0 = −∞, En+1 =∞. If ξ ∈ (Ek−1, Ek) with some k ∈ {1, 2, . . . , n+ 1}, then

P 1(ξ) =
1

c

∫ ξ

−∞
e−

M1(ξ−s)
c F 1(s) ds

=

(
k−1∑
i=0

1

c

∫ Ei

Ei−1

+
1

c

∫ ξ

Ei−1

)
e−

M1(ξ−s)
c F 1(s) ds

≤

(
k−1∑
i=0

1

c

∫ Ei

Ei−1

+
1

c

∫ ξ

Ei−1

)
e−

M1(ξ−s)
c (cφ

′
(s) +M1φ(s)) ds

= φ(ξ).

Since P 1(ξ) and φ(ξ) are continuous functions, we obtain

P 1(ξ) ≤ φ(ξ), ξ ∈ R.

In a similar way, we can deduce that

φ(ξ) ≤ P 1(ξ), ξ ∈ R,

and

ψ(ξ) ≤ P2(φ, ψ)(ξ) ≤ ψ(ξ), ξ ∈ R.

Thus, we have P (Γ) ⊂ Γ. In addition, if µ satisfies µ < M1
2c (the proof is similar to [16,

Lemma 3.4]), we obtain that P : Γ→ Γ is complete continuous in the sense of | · |µ. Thus,

using Schauder’s fixed point theorem, we complete the proof of Lemma 4.2.
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4.2. Existence of planar wave solutions for c ≥ c∗

In order to construct a pair of proper super-sub solutions, we consider the function

∆(λ, c) := d2

[∫
RN

J2(x)eλx1 dx− 1

]
− cλ+ r2(βf(1)− 1)

= d2

[∫
R
J̃2(x1)e

λx1 dx1 − 1

]
− cλ+ r2(βf(1)− 1),

where β := β
r2

. By the convexity, we have the following conclusion.

Lemma 4.3. Let Assumption 1.1 be satisfied. Then the following statements hold.

(i) If c > c∗, then the equation ∆(λ, c) = 0 has two positive roots λ1(c), λ2(c), and

0 < λ1(c) < λ2(c) < λ0. Moreover, ∆(λ, c) < 0, if λ ∈ (λ1(c), λ2(c)). ∆(λ, c) > 0, if

λ ∈ (0, λ1(c)) ∪ (λ2(c), λ0).

(ii) If 0 < c < c∗, then ∆(λ, c) > 0 for all λ ∈ (0, λ0).

(iii) If c = c∗ > 0, then ∆(λ, c∗) ≥ 0 for any λ ∈ (0, λ0) and ∆(λ, c∗) = 0 has a unique

root λ∗.

The following theorem presents us the existence of nonnegative solutions of system (4.4)

with c > c∗ connecting the predator-free equilibrium (1, 0) at ξ = −∞.

Theorem 4.4. Let c > c∗ be given and fixed. Then, (4.4) admits a nonnegative solution

(φ, ψ) such that lim supξ→−∞(φ(ξ), ψ(ξ)) = (0, 0).

Proof. Let c > c∗ be given and fixed. We define the following continuous functions:

φ(ξ) =

Keλξ, ξ ≤ ξ0,

1, ξ ≥ ξ0,
ψ(ξ) =

eλ1ξ, ξ ≤ ξ1,

βf(1)− 1, ξ ≥ ξ1,

φ(ξ) ≡ 0, ψ(ξ) =

eλ1ξ − qeηλ1ξ, ξ ≤ ξ2,

0, ξ ≥ ξ2.

Define

A(λ) := d1

[∫
R
J̃1(x1)e

λx1 dx1 − 1

]
− cλ.

Since A(0) = 0 and

A′(0) = lim
λ→0

{
d1

∫
R
J̃1(x1)x1e

λx1 dx1 − c
}

= −c < 0,

there exists λ ∈ (0,min{λ0, λ1(c)}) such that

(4.9) A(λ) = d1

[∫
R
J̃1(x1)e

λx1 dx1 − 1

]
− cλ < 0.
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For notational simplicity, since c is fixed in this proof, we simply denote λi = λi(c), i = 1, 2.

First, we define ξ1 by eλ1ξ1 = βf(1) − 1 and choose a constant ξ0 < min{0, ξ1} such

that ae(λ1−λ)ξ0 < 1. Next, we set K = e−λξ0 . Clearly K > 1 and

(4.10) aeλ1ξ < eλξ, ∀ ξ < ξ0.

Then, take η ∈ (1, 2) such that

(4.11) ηλ1 < min{λ2, λ1 + λ}.

Finally, for q > 1 define ξ2 = ξ2(q) < 0 by e(η−1)λ1ξ2 = 1
q . Letting q → ∞, we have

ξ2 → −∞. We can take a constant q > 1 large enough such that ξ2 ≤ ξ0 and

(4.12) q >
r2 + r2βf(1)K

−4(ηλ1, c)
+ 1.

Obviously, φ(ξ) ≤ φ(ξ) for any ξ ∈ R. Since ξ2 < ξ1, we also have ψ(ξ) ≤ ψ(ξ) for all

ξ ∈ R.

Now we prove that the functions (φ, ψ) and (φ, ψ) are a pair of super and sub solutions

of (4.4) with (φ, ψ)(−∞) = (φ, ψ)(−∞) = (0, 0).

For ξ > ξ0, we have φ(ξ) = 1 and φ
′
(ξ) = 0, so that

d1Ñ1[φ](ξ)− r1φ(ξ)[1− φ(ξ)] + f(1− φ(ξ))ψ(ξ)− cφ′(ξ)

= d1

[∫
R
J̃1(x1)φ(ξ − x1) dx1 − φ(ξ)

]
≤ 0.

Thus, condition (4.5) holds for ξ > ξ0.

For ξ < ξ0, we have φ(ξ) = Keλξ < 1. Moreover, φ(ξ) ≤ Keλξ for all ξ ∈ R and

ψ(ξ) = eλ1ξ for all ξ < ξ0 ≤ ξ1. Using f(x) < ax and the symmetry of the function J̃1, it

follows from (4.9) and (4.10) that

d1Ñ1[φ](ξ) + f(1− φ(ξ))ψ(ξ)− r1φ(ξ)[1− φ(ξ)]− cφ′(ξ)

≤ d1
[∫

R
J̃1(x1)φ(ξ − x1) dx1 −Keλξ

]
+ a(1− φ(ξ))ψ(ξ)− r1φ(ξ)[1−Keλξ]− cλKeλξ

≤ d1
[∫

R
KJ̃1(x1)e

λ(ξ−x1) dx1 −Keλξ
]

+ r1(1−Keλξ)

[
a

r1
eλ1ξ −Keλξ

]
− cλKeλξ

≤ Keλξ
{
d1

[∫
R
J̃1(x1)e

λx1 dx1 − 1

]
− cλ

}
≤ 0.

Hence, condition (4.5) also holds for ξ < ξ0 and thus for any ξ 6= ξ0.

We now consider (4.6). For ξ > ξ1, we get ψ(ξ) = βf(1)− 1. Since ψ(ξ) ≤ βf(1)− 1

for all ξ ∈ R, it follows that

d2Ñ2[ψ](ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)]− cψ′(ξ)
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≤ d2
[∫

R
(βf(1)− 1)J̃2(x1) dx1 − (βf(1)− 1)

]
+ r2(βf(1)− 1)[βf(1)− 1− (βf(1)− 1)]

= 0.

Hence, (4.6) holds for ξ > ξ1.

For ξ < ξ1, we get ψ(ξ) = eλ1ξ. Applying ψ(ξ) ≤ eλ1ξ for all ξ ∈ R and φ(ξ) ≡ 0, we

deduce that

d2Ñ2[ψ](ξ)− cψ′(ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)]

= d2Ñ2[ψ](ξ)− cψ′(ξ) + r2ψ(ξ)[βf(1)− 1− ψ(ξ)]

≤ d2Ñ2[ψ](ξ)− cψ′(ξ) + r2(βf(1)− 1)ψ(ξ)

= d2

[∫
R
ψ(ξ − x1)J̃2(x1) dx1 − eλ1ξ

]
− cλ1eλ1ξ + r2(βf(1)− 1)eλ1ξ

≤ eλ1ξ4(λ1, c) = 0

for all ξ < ξ1. Hence, (4.6) also holds for ξ < ξ1 and thus for all ξ ∈ R \ {ξ1}.
Now consider (4.7). Since φ(ξ) ≡ 0, using (H1) and ψ(ξ) ≥ 0, it follows that

d1Ñ1[φ](ξ)− r1φ(ξ)[1− φ(ξ)] + f(1− φ(ξ))ψ(ξ)− cφ′(ξ) = f(1)ψ(ξ) ≥ 0.

Hence, (4.7) holds for all ξ ∈ R. It remains to check that (4.8) holds true. Clearly, for

ξ > ξ2, we have ψ(ξ) = 0 and (4.8) holds true for ξ > ξ2.

For ξ < ξ2, one has ψ(ξ) = eλ1ξ − qeηλ1ξ. Since ξ2 ≤ ξ0, we have φ(ξ) = Keλξ, thus

0 < φ(ξ) < 1. In addition, for any ξ ∈ R, one has ψ(ξ) ≤ eλ1ξ and ψ(ξ) ≥ eλ1ξ − qeηλ1ξ.
Using (H3), ξ < ξ2 < 0 and 4(λ1, c) = 0, from (4.11) and (4.12), it follows that

d2Ñ2[ψ](ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)]− cψ′(ξ)

≥ d2
[∫

R
J̃2(x1)ψ(ξ − x1) dx1 − (eλ1ξ − qeηλ1ξ)

]
+ r2ψ(ξ)[βf(1)(1− φ(ξ))− 1− ψ(ξ)]− c(λ1eλ1ξ − qλ1ηeηλ1ξ)

= d2

[∫
R
J̃2(x1)ψ(ξ − x1) dx1 − (eλ1ξ − qeηλ1ξ)

]
+ r2ψ(ξ)(βf(1)− 1)− r2βf(1)ψ(ξ)φ(ξ)− r2ψ2(ξ)− c(λ1eλ1ξ − qλ1ηeηλ1ξ)

≥ d2
[∫

R
J̃2(x1)(e

λ1(ξ−x1) − qeηλ1(ξ−x1)) dx1 − (eλ1ξ − qeηλ1ξ)
]

+ r2(βf(1)− 1)(eλ1ξ − qeηλ1ξ)− r2βf(1)Ke(λ+λ1)ξ − r2e2λ1ξ − c(λ1eλ1ξ − qλ1ηeηλ1ξ)

≥ eλ1ξ4(λ1, c) + eηλ1ξ
{
−q4(ηλ1, c)− r2e(2−η)λ1ξ − r2βf(1)Ke(λ+λ1−ηλ1)ξ

}
≥ eηλ1ξ[−q4(ηλ1, c)− r2 − r2βf(1)K] > 0.
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Then we get that (4.8) also holds for ξ < ξ2 and thus for any ξ ∈ R \ {ξ2}.
It follows from Lemma 4.2 that there exists a unique solution (φ, ψ) with (φ, ψ) ≤

(φ, ψ) ≤ (φ, ψ). Since (φ, ψ)(−∞) = (φ, ψ)(−∞) = (0, 0), we conclude that (φ, ψ)(−∞) =

(0, 0). This is the end.

We now derive the existence of nonnegative solutions of system (4.4) with c = c∗

connecting the predator-free equilibrium (1, 0) at ξ = −∞.

Theorem 4.5. Assume that the function J2 is compactly supported. Then, system (4.4)

with c = c∗ admits a nonnegative solution (φ, ψ) such that limξ→−∞(φ(ξ), ψ(ξ)) = (0, 0).

Proof. The approach is to construct a suitable pair of super and sub solutions satisfying

the limit condition (φ, ψ)(−∞) = (φ, ψ)(−∞) = (0, 0).

We set the following functions:

φ(ξ) =

Keλξ, ξ ≤ ξ0,

1, ξ ≥ ξ0,
ψ(ξ) =

−Lξeλ
∗ξ, ξ ≤ ξ1,

βf(1)− 1, ξ ≥ ξ1,

φ(ξ) ≡ 0, ψ(ξ) =

(−Lξ − q
√
−ξ)eλ∗ξ, ξ ≤ ξ3,

0, ξ ≥ ξ3,

where L, K, q are constants to be determined (in order) later while the constant λ ∈
(0,min{λ0, λ∗/2}) is defined as before so that (4.9) holds with c = c∗.

Since J2 has a compact support, we choose a positive constant G such that

J2(x) = 0, ‖x‖ > G.

For any large enough constant L, the following equation −Lξeλ∗ξ = βf(1) − 1 has two

negative roots, denoted by ξ1, ξ2 and ξ1 < ξ2, and

(4.13) ξ2 − ξ1 > G.

It is easy to see that

ξ1 < −
1

λ∗
< ξ2 < 0 and Lξeλ

∗ξ > βf(1)− 1 for all ξ ∈ (ξ1, ξ2).

Fix λ∗ ∈ (λ∗ − λ, λ∗). Since λ < λ∗/2, we have λ∗ > λ. Because λ∗ − λ∗ − λ < 0, we

can take ξ0 < 0 such that

(4.14) ξ0 < min{−1/(λ∗ − λ∗), ξ1}, e(λ∗−λ
∗−λ)ξ0/(−ξ0) > aL.

For such a fixed ξ0, we set K := e−λξ0 . Define function s : R→ R as s(ξ) := (−ξ)e(λ∗−λ∗)ξ.
It easy to see that s(ξ) is increasing on (−∞,−1/(λ∗ − λ∗)). Then, we have

s(ξ) < s(ξ0) for ξ ≤ ξ0,
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hence, it follows that

−aLξe(λ∗−λ∗)ξ < −aLξ0e(λ
∗−λ∗)ξ0 .

Since λ∗ > λ and (4.14), we deduce that

(4.15) − aLξeλ∗ξ < Keλ∗ξ < Keλξ for all ξ ≤ ξ0.

According to [2,6], we know that the function z 7→ Y (z) := [−Lz−q(−z)1/2]eλ∗z is positive

and has a unique critical (maximal) point in (−∞, ξ3), where ξ3 := −(q/L)2, for any q > 0.

Then, we take q large enough such that

ξ3 < ξ0,(4.16)

q ≥
maxξ<0

{
8(−ξ +G)3/2

[
r2βf(1)K

2

a e(λ+λ∗−λ
∗)ξ + r2

K2

a2
e(2λ∗−λ

∗)ξ
]}

d2
∫
R J̃2(x1)x

2
1e
−λ∗x1 dx1

.(4.17)

It is clear that φ ≤ φ on R, and ψ < ψ on R by (4.16), ξ3 < ξ0 < ξ1. Clearly (4.5) holds

for ξ > ξ0.

For ξ < ξ0, one has φ(ξ) = Keλξ < 1. Since f(x) ≤ ax and φ(ξ) ≤ Keλξ for all ξ ∈ R.

Using ξ0 < ξ1, (4.9) and (4.15), it follows that

d1Ñ1[φ](ξ) + f(1− φ(ξ))ψ(ξ)− r1φ(ξ)[1− φ(ξ)]− c∗φ′(ξ)

≤ d1
[∫

R
J̃1(x1)φ(ξ − x1) dx1 −Keλξ

]
+ a(1− φ(ξ))ψ(ξ)− r1φ(ξ)(1−Keλξ)− c∗λKeλξ

≤ Keλξ
{
d1

[∫
R
J̃1(x1)e

λx1 dx1 − 1

]
− c∗λ

}
+ r1(1−Keλξ)

[
−a
r1
Lξeλ

∗ξ −Keλξ
]
< 0

for ξ < ξ0. Hence, condition (4.5) also holds for ξ < ξ0 and thus for any ξ 6= ξ0.

We now turn to (4.6). For ξ > ξ1, we have ψ(ξ) = βf(1)− 1. Since ψ(ξ) ≤ βf(1)− 1

for all ξ ∈ R, we have

d2Ñ2[ψ](ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)]− cψ′(ξ)

≤ d2
[∫

R
(βf(1)− 1)J̃2(x1) dx1 − (βf(1)− 1)

]
+ r2(βf(1)− 1)[βf(1)− 1− (βf(1)− 1)] = 0.

Hence, (4.6) holds for ξ > ξ1.

For ξ < ξ1, from the assumption that J2 has a compact support in BG(0) and (4.13),

we obtain ξ − x1 ≤ ξ1 +G < ξ2 for all x1 ∈ [−G,G] and∫
R
ψ(ξ − x1)J̃2(x1) dx1 =

∫ G

−G
ψ(ξ − x1)J̃2(x1) dx1

≤
∫
R

{
− L(ξ − x1)eλ

∗(ξ−x1)}J̃2(x1) dx1.
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Hence, we have

d2Ñ2[ψ](ξ)− c∗ψ′(ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)]

= d2Ñ2[ψ](ξ)− c∗ψ′(ξ) + r2ψ(ξ)[βf(1)− 1− ψ(ξ)]

≤ d2Ñ2[ψ](ξ)− c∗ψ′(ξ) + r2(βf(1)− 1)ψ(ξ)

= d2

[∫
R
ψ(ξ − x1)J̃2(x1) dx1 + Lξeλ

∗ξ

]
+ c∗L(λ∗ξ + 1)eλ

∗ξ − r2L(βf(1)− 1)ξeλ
∗ξ

≤ d2
[∫

R
{−L(ξ − x1)eλ

∗(ξ−x1)}J̃2(x1) dx1 + Lξeλ
∗ξ

]
+ c∗L(λ∗ξ + 1)eλ

∗ξ − r2L(βf(1)− 1)ξeλ
∗ξ

= −Lξeλ∗ξ
{
d2

[∫
R

eλ
∗x1 J̃2(x1) dx1 − 1

]
− c∗λ∗ + r2(βf(1)− 1)

}
+ Leλ

∗ξ

[
d2

∫
R
x1e
−λ∗x1 J̃2(x1) dx1 + c∗

]
= 0

for all ξ < ξ1, where we use a change of variable z = −x1 yielding

(4.18) d2

∫ +∞

−∞
x1e
−λ∗x1 J̃2(x1) dx1 = −d2

∫ +∞

−∞
zeλ

∗zJ̃2(z) dz = −c∗.

Hence, (4.6) also holds for ξ < ξ1 and thus for all ξ ∈ R \ {ξ1}.
Now consider (4.7). Since φ(ξ) ≡ 0, using (H2), and ψ(ξ) ≥ 0, we deduce that

d1Ñ1[φ](ξ)− r1φ(ξ)[1− φ(ξ)] + f(1− φ(ξ))ψ(ξ)− cφ′(ξ) = f(1)ψ(ξ) ≥ 0.

Hence, for all ξ ∈ R (4.7) holds. It remains to check that (4.8) holds true. To do so,

observe that for ξ > ξ3, we have ψ(ξ) = 0 and (4.8) holds true for ξ > ξ3.

For ξ < ξ3, one has ψ(ξ) = (−Lξ − q
√
−ξ)eλ∗ξ. Furthermore, for all z ∈ R, we have

ψ(z) ≥ (−Lz − q
√
−z)eλ∗z. Using (H3), (4.15), (4.16) and

d2

[∫
R
J̃2(x1)e

−λ∗x1 dx1 − 1

]
−c∗λ∗+r2(βf(1)−1) = 0,

∫
R
J̃2(x1)x1e

−λ∗x1 dx1 +c∗ = 0,

it follows that

d2Ñ2[ψ](ξ)− c∗ψ′(ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)]

≥ d2
[∫

R
J̃2(x1)ψ(ξ − x1) dx1 − ψ(ξ)

]
− c∗ψ′(ξ) + r2ψ(ξ)[βf(1)(1− φ(ξ))− 1− ψ(ξ)]

≥ d2
∫
R
J̃2(x1)

{[
− L(ξ − x1)− q

√
−(ξ − x1)

]
eλ

∗(ξ−x1)
}

dx1 − d2(−Lξ − q
√
−ξ)eλ∗ξ

+ c∗L(1 + λ∗ξ)eλ
∗ξ + c∗q

(
λ∗
√
−ξ − 1

2
√
−ξ

)
eλ

∗ξ

+ r2ψ(ξ)(βf(1)− 1)− r2βf(1)ψ(ξ)φ(ξ)− r2ψ
2
(ξ)
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≥ d2eλ
∗ξ

[∫
R
J̃2(x1)[−L(ξ − x1)]e−λ

∗x1 dx1 + Lξ

]
+ c∗L(1 + λ∗ξ)eλ

∗ξ

− qd2eλ
∗ξ

[∫
R
J̃2(x1)

√
−(ξ − x1)e−λ

∗x1 dx1 −
√
−ξ
]

+ c∗q

(
λ∗
√
−ξ − 1

2
√
−ξ

)
eλ

∗ξ

+ r2(βf(1)− 1)[(−Lξ − q
√
−ξ)eλ∗ξ]− r2βf(1)

K2

a
e(λ+λ∗)ξ − r2

K2

a2
e2λ∗ξ

= −qd2eλ
∗ξ

[∫
R
J̃2(x1)

√
−(ξ − x1)e−λ

∗x1 dx1 −
√
−ξ
]

+ c∗q

(
λ∗
√
−ξ − 1

2
√
−ξ

)
eλ

∗ξ

− r2(βf(1)− 1)q
√
−ξeλ∗ξ − r2βf(1)

K2

a
e(λ+λ∗)ξ − r2

K2

a2
e2λ∗ξ

:= eλ
∗ξ[qI1(ξ)− I2(ξ)],

where

I1(ξ) := −d2
[∫

R
J̃2(x1)

√
−(ξ − x1)e−λ

∗x1 dx1 −
√
−ξ
]

+ c∗
(
λ∗
√
−ξ − 1

2
√
−ξ

)
− r2(βf(1)− 1)

√
−ξ,

I2(ξ) := r2βf(1)
K2

a
e(λ+λ∗−λ

∗)ξ + r2
K2

a2
e(2λ∗−λ

∗)ξ.

Next, to get the conclusion, we need to deduce a lower bound estimate of I1 for ξ < ξ3.

Using 4(λ∗, c∗) = 0 and (4.18), it follows that

I1(ξ) = −d2
{∫

R
J̃2(x1)

[√
−ξ +

√
−(ξ − x1)−

√
−ξ
]
e−λ

∗x1 dx1 −
√
−ξ
}

+ c∗
(
λ∗
√
−ξ − 1

2
√
−ξ

)
− r2(βf(1)− 1)

√
−ξ

= −d2
{∫

R
J̃2(x1)

[√
−(ξ − x1)−

√
−ξ
]
e−λ

∗x1 dx1

}
− c∗

2
√
−ξ

= d2

{∫
R
J̃2(x1)

[√
−ξ −

√
−(ξ − x1)

]
e−λ

∗x1 dx1

}
+

d2

2
√
−ξ

∫
R
J̃2(x1)x1e

−λ∗x1 dx1

:= d2

∫
R
J̃2(x1)Q(ξ, x1)e

−λ∗x1 dx1,

where Q(ξ, x1) is defined by

Q(ξ, x1) :=
x1

2
√
−ξ

+
√
−ξ −

√
−(ξ − x1).

Clearly

Q(ξ, x1) =
x1

2
√
−ξ
− x1√
−ξ −

√
−(ξ − x1)

=
x1
[√
−(ξ − x1)−

√
−ξ
]

2
√
−ξ
[√
−(ξ − x1) +

√
−ξ
]

=
x21

2
√
−ξ
[√
−(ξ − x1) +

√
−ξ
]2 .
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Because J2 = 0 outside BG(0) and

2
√
−ξ
[√
−(ξ − x1) +

√
−ξ
]2
≤ 8(−ξ +G)3/2 for |x1| < G,

we get the following lower estimate

(4.19) I1(ξ) ≥
d2

8(−ξ +G)3/2

∫
R
J̃2(x1)x

2
1e
−λ∗x1 dx1 for ξ < ξ3.

Finally, we use (4.17) and (4.19) to infer that

d2Ñ2[ψ](ξ)− c∗ψ′(ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)] ≥ 0

for all ξ < ξ3. This completes the proof of the theorem.

The following theorem gives the proof of the existence of nonnegative solutions of

system (4.4) with c ≥ c∗ connecting the nontrivial state at ξ =∞.

Theorem 4.6. Let c ≥ c∗ and let (φ, ψ) be any solution provided by Theorems 4.4 or

4.5. Then, it holds that lim supξ→∞ φ(ξ) < 1. Moreover, if we assume that aβf(1) < 1,

lim infξ→∞ ψ(ξ) > 0 also hold true.

Proof. Let

(U, V )(x, t) := (1− φ, ψ)(x · ν + ct).

Since V ≤ βf(1)− 1 in RN × R and (H2), it follows from (1.1) that U = U(x, t) satisfies

∂U(x, t)

∂t
≥ d1N1[U( · , t)](x) + r1U(x, t){[1− a(βf(1)− 1)]− U(x, t)}, x ∈ RN , t > 0,

such that U(x, 0) = 1 − φ(x · ν) ≥ 0 and U 6≡ 0. Indeed, letting x · ν → −∞, we have

U(x, 0)→ 1. Applying Proposition 2.1, we obtain that U ≥ z, where z is the solution to
∂z(x,t)
∂t = d1N1[z( · , t)](x) + r1z(x, t){[1− a(βf(1)− 1)]− z(x, t)}, x ∈ RN , t > 0,

z(x, 0) = U(x, 0), x ∈ RN .

Also, from Proposition 2.3(ii), it follows that z(x, t)→ 1− a(βf(1)− 1) as t→∞ for all

x ∈ RN . Hence, we obtain that

lim inf
t→∞

U(0, t) ≥ lim inf
t→∞

z(0, t),

i.e.,

lim sup
t→∞

φ(ct) = 1− lim inf
t→∞

U(0, t) ≤ 1− lim inf
t→∞

z(0, t) = a(βf(1)− 1).

Since c > 0, we conclude that

(4.20) lim sup
ξ→∞

φ(ξ) ≤ a(βf(1)− 1) < 1.
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To prove the second part, we first show a claim:

(4.21) D := sup
ξ∈R

φ(ξ) ≤ a(βf(1)− 1).

Indeed, by contradiction we assume that D > a(βf(1) − 1). Then, from (4.20) and

φ(ξ) → 0 as ξ → −∞, there exists ξ0 ∈ R such that φ(ξ0) = D. Thus, φ(ξ0) = D ≥ φ(ξ)

for all ξ ∈ R. Using φ(−∞) = 0, φ ≤ 1, ψ ≤ βf(1)− 1, and f(x) ≤ ax, we obtain that

d1Ñ1[φ](ξ0)− r1φ(ξ0)[1− φ(ξ0)] + f(1− φ(ξ0))ψ(ξ0)

= d1

[∫
R
J̃1(x1)φ(ξ0 − x1) dx1 − φ(ξ0)

]
− r1φ(ξ0)(1− φ(ξ0)) + f(1− φ(ξ0))ψ(ξ0)

< d1φ(ξ0)

∫
R
J̃1(x1) dx1 − d1φ(ξ0) + r1(1− φ(ξ0))(aψ(ξ0)− φ(ξ0))

≤ r1(1− φ(ξ0))[a(βf(1)− 1)−D] ≤ 0.

According to the first equation of (4.4), we conclude that φ′(ξ0) < 0 which contradicts

φ′(ξ0) = 0. Hence, (4.21) holds.

From (4.21), (H3) and aβf(1) < 1, it follows that the function V (x, t) = ψ(x · ν + ct)

satisfies
∂V
∂t (x, t) ≥ d2N2[V ( · , t)](x)

+r2V (x, t)[(1− aβf(1))(βf(1)− 1)− V (x, t)], x ∈ RN , t > 0,

V (x, 0) = ψ(x), x ∈ RN .

Then, a similar argument above will deduce that

lim inf
t→∞

ψ(ξ) ≥ (1− aβf(1))(βf(1)− 1) > 0.

This completes the proof of the theorem.

The following theorem indicates that the nontrivial state at ξ → ∞ is actually a

coexisting state, if system (1.1) has a unique coexisting state and the wave tail converges

at ξ →∞.

Theorem 4.7. Let (U, V ) be a traveling wave of (1.1) connecting (1, 0) and a nontrivial

state. Assume that the limit

(u, v) := lim
ξ→∞

(U, V )(ξ)

exists. If the kinetic part of system (1.1) has a unique coexistence state (U∗, V ∗) satisfying

r1U
∗(1− U∗)− f(U∗)V ∗ = 0,

βf(U∗)V ∗ − r2V ∗(1 + V ∗) = 0,

then (u, v) = (U∗, V ∗).
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Proof. According to the assumption, we have (Ut, Vt)(ξ)→ (0, 0) as ξ →∞. By (4.1) and

priori estimates, we obtain 0 < u ≤ 1 and 0 < v ≤ α. To the aim, we only need to show

that

(J̃1 ∗ U)(ξ)→ u, (J̃1 ∗ V )(ξ)→ v as ξ →∞,

if the kinetic part of system (1.1) has a unique coexistence state (U∗, V ∗).

Let ε ∈ (0, u). Because U(+∞) = u and
∫
R J̃1(x1) dx1 = 1, there exists K0 > 0 large

enough such that∫ ∞
K0

J̃1(x1) dx1 <
ε

2
and u− ε

2
< U(ξ) < u+

ε

2
, ∀ ξ ≥ K0.

Denote∫
R
J̃1(x1)U(ξ − x1) dx1 =

∫ K0

−∞
J̃1(x1)U(ξ − x1) dx1 +

∫ ∞
K0

J̃1(x1)U(ξ − x1) dx1

:= I3(ξ) + I4(ξ).

Using ξ− x1 ≥ K0 for x1 ≤ K0 and ξ ≥ 2K0,
∫
R J̃1(x1) dx1 = 1 and U ≤ 1, it follows that

(4.22) I3(ξ) + I4(ξ) ≤
(
u+

ε

2

)
+
ε

2
= u+ ε, ∀ ξ ≥ 2K0.

On the other hand, since u ≤ 1, we have

(4.23) I3(ξ) + I4(ξ) ≥ I3(ξ) ≥
(
u− ε

2

)(
1− ε

2

)
≥ u− ε, ∀ ξ ≥ 2K0.

By (4.22) and (4.23), we obtain

(J̃1 ∗ U)(ξ)→ u, ξ →∞.

Using the same method, we get (J̃1 ∗ V )(ξ)→ v as ξ →∞. This completes the proof.

4.3. Nonexistence of planar wave solutions for c < c∗

Theorem 4.8. If c ∈ (0, c∗), then (4.4) does not admit any nontrivial nonnegative solution

(φ, ψ) satisfying (4.3) and limξ→−∞(φ(ξ), ψ(ξ)) = (0, 0).

Proof. To prove this result, by contradiction we assume that (4.4) admits a nontrivial

nonnegative solution (φ, ψ) satisfying limξ→−∞(φ(ξ), ψ(ξ)) = (0, 0) and (4.3) for some

wave speed c1 ∈ (0, c∗). Here, we have φ > 0 and ψ > 0 on R.

Let ε ∈ (0, (βf(1)− 1)/2) be given such that

c2 := inf
λ>0

d2
[ ∫

R J̃2(x1)e
λx1 dx1 − 1

]
+ r2(βf(1)− 1− ε)

λ
> c1.
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Because φ(−∞) = 0, there exists a ξ0 ∈ R such that βf(1)φ(ξ) < ε for all ξ ≤ ξ0. Due to

ψ > 0 as ξ > ξ0 and (4.3), there exists δ > 0 such that infξ>ξ0 ψ(ξ) ≥ δ.
Define M2 > 1 by δ(M2 − 1) = βf(1). Then, since φ ≤ 1, we get

βf(1)φ(ξ) ≤ (M2 − 1)ψ(ξ) for all ξ ≥ ξ0.

Using (H3), we deduce that

c1ψ
′(ξ) ≥ d2Ñ2[ψ](ξ) + r2ψ(ξ)[βf(1)− 1− ε−M2ψ(ξ)], ξ ∈ R,

and the function V (x, t) := ψ(x · ν + c1t) satisfies∂V
∂t (x, t) ≥ d2N2[V ( · , t)](x) + r2V (x, t)[βf(1)− 1− ε−M2V (x, t)], x ∈ RN , t > 0,

V (x, 0) = ψ(x) > 0, x ∈ RN .

Denote c := (c1 + c2)/2 < c2. Applying Propositions 2.1 and 2.3(ii), we can infer that

(4.24) lim inf
t→∞

V‖x‖<ct(x, t) ≥
βf(1)− 1− 2ε

M2
> 0.

Letting x1 = − c1+c2
2 te1, where e1 = (1, 0, . . . , 0), we have ‖x1‖ < ct. Clearly,

−(c2 + c1)t/2 + c1t = (c1 − c2)t/2→ −∞ as t→∞.

Thus, it follows from (4.24) that

lim inf
ξ→−∞

ψ(ξ) = lim inf
t→∞

V

(
−c1 + c2

2
t, t

)
≥ βf(1)− 1− 2ε

M2
> 0,

which contradicts the limit condition ψ(−∞) = 0. This completes the proof.

4.4. Minimal wave speed

In this subsection, we conclude that the spreading speed of the predatory is the minimal

wave speed c∗.

Theorem 4.9. In addition to (1.3), assume that aβf(1) < r1r2 and d2 < βf(1)− r2, and

that J2 has a compact support. Then, (1.1) admits planar wave solution connecting (1, 0)

to a nontrivial state with speed c ∈ R if and only if c ≥ c∗.

Proof. According to the results in Sections 4.2 and 4.3, in order to prove the theorem, we

only need to prove that, under the parameter condition d2 < βf(1)− r2, the nonnegative

planar wave solution (φ, ψ) of system (4.4) combined with (φ, ψ)(−∞) = (0, 0) and (4.3)

satisfies c > 0. Indeed, by contradiction, we assume that (4.4) admits a nonnegative

solution (φ, ψ) with speed c ≤ 0 satisfying (φ, ψ)(−∞) = (0, 0) and (4.3).
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Due to (φ, ψ)(−∞) = (0, 0) and (H3), there exists a sufficiently large constant M3 such

that for all ξ < −M3,

r2[βf(1− φ(ξ))− 1− ψ(ξ)] ≥ r2[βf(1)− βf(1)φ(ξ)− 1− ψ(ξ)]

> L1 :=
r2(βf(1)− 1)

2
+
d2
2
.

(4.25)

Since J̃2 ≥ 0 and ψ > 0, it follows from (4.4) and (4.25) that for all ξ < −M3,

cψ′(ξ) = d2

∫
R
J̃2(ξ − x1)ψ(x1) dx1 − d2ψ(ξ) + r2ψ(ξ)[βf(1− φ(ξ))− 1− ψ(ξ)]

≥ r2ψ(ξ)[βf(1)− βf(1)φ(ξ)− 1− ψ(ξ)]− d2ψ(ξ)

≥ L1ψ(ξ)− d2ψ(ξ)

= (L1 − d2)ψ(ξ).

Moreover, according to the condition d2 < βf(1) − r2 = r2(βf(1) − 1), we have

L2 := L1 − d2 > 0. Integrating from −∞ to y ≤ −M3 for the above inequality, we have

cψ(y) ≥ L2

∫ y

−∞
ψ(ξ) dξ, ∀ y ≤ −M3.

Thus, we have c > 0 which contradicts c ≤ 0. This completes the proof.

5. Numerical simulations

In this section, we illustrate the main results by using numerical simulations.

For simplicity, we consider N = 1, f(U) = U
1+U , that is, the system (1.1) becomes

(5.1)



∂U
∂t (x, t) = d1N1[U( · , t)](x) + r1U(x, t)(1− U(x, t))

− U(x,t)
1+U(x,t)V (x, t),

∂V
∂t (x, t) = d2N2[V ( · , t)](x) + β U(x,t)

1+U(x,t)V (x, t)

−r2V (x, t)(1 + V (x, t)),

x ∈ R, t > 0.

We take the kernel function Ji(x) = J%(x) = 1√
2π%2

e
−x2
2%2 (i = 1, 2). In addition, the

parameters of system (5.1) are taken as: d1 = d2 = 1, r1 = 4, r2 = 1, % = 1, β = 5. It

is easy to know that the system (5.1) has three constant equilibrium states: E0 = (0, 0),

E1 = (1, 0) and E∗ = (U∗, V ∗) = (0.8271, 1.2634).

First, we use numerical simulations to illustrate the spreading speed of the predator.

We choose Ω1 = [−150, 150] and initial conditions

(5.2) U(x, 0) = 1, v0(x) =


1
5 , x = 0,

1
5

(
1
5 − |x|

)
, 0 < |x| ≤ 5,

0, |x| > 5.
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With the help of MATLAB, we obtain the numerical solution (U, V ) of system (5.1)

under the initial conditions (5.2) (see Figure 5.1). Figure 5.1 shows that there are a small

number of predators V near the origin. These predators spread in space over time and

feed on the aborigine prey U (the density of U is 1), after a period of time, the density of

prey decreases and the density of the predator increases. If let xa±(t) denote the spatial

position when the species V diffuses to the density a (when spreading to the left to the

density a, it is represented by xa−(t), and to the right is represented by xa+(t)), as shown

in Figure 5.2. The spreading speed can be defined as c∗ = ± limt→∞
dxa±(t)

dt , ∀ a ∈ (0, 1).

From Figures 5.2 and 5.3, we get the spreading speed of the predator is about c∗ = 2.118.

Figure 5.1: Numerical solution of system (5.1) under initial conditions (5.2).
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Figure 5.2: Figures of the solution in Figure 5.1 at time t = 1, 16, 31, 46.

Now, we use numerical simulations to study the planar wave solutions of system (5.1).
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We choose Ω2 = [−400, 400] and the initial datum

(5.3)

U(x, 0) = (1− U∗)
(
1− 1

4(1 + tanh(x))2
)

+ U∗,

v0(x) = V ∗
(
1− 1

4(1− tanh(x))2
)
,

x ∈ [−400, 400].

Figure 5.3: The projections of U(x, t) and V (x, t) on the xot plane in Figure 5.1.

From Theorems 4.4, 4.5 and 4.6, system (5.1) admits a planar wave connecting the

predator-free state (1, 0) and a nontrivial state with speed c ≥ c∗ = 2.118. According

to Theorem 4.9, we know that c∗ is also the minimal wave speed of the invasion planar

waves. Through numerical simulations (see Figure 5.4), we can get the same result as

Theorem 4.7, namely, the solution of system (5.1) eventually converge to the positive

equilibrium (U∗, V ∗), which implies that the species U and V will coexist.

Figure 5.4: The solutions of system (5.1) with initial (5.3).

Here, we give some explanations of the ecological phenomena related to these results.

In the actual biological environment, at the beginning, there was only the aborigine species
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U with a density at its carrying capacity. After some time, the exotic species V invades

the system (5.1) by feeding on species U . Then based on our results, the two species will

eventually coexist.
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