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Abstract

In this paper, we mainly study the propagation properties of solutions of the predator-prey system with 
nonlocal dispersal. More specifically, we explored the spreading speeds of the predator and the prey in two 
different situations, namely, the predator spreads faster than the prey and the predator spreads slower than 
the prey. The main difficulty lies in the fact that the comparison principle cannot be used for the predator-
prey system. We use the comparison principle of the scalar equation and the method of upper and lower 
solutions to prove the results. In addition, we establish the comparison principle of nonlocal dispersal equa-
tions in space and time dependent environment. We conclude that the predator and the prey will eventually 
coexist by constructing a suitable Lyapunov functional. Finally, we use numerical simulations to illustrate 
the results.
© 2022 Elsevier Inc. All rights reserved.

MSC: 35K57; 35B40; 92D25

Keywords: Predator-prey system; Spreading speed; Nonlocal dispersal; Comparison principle; Lyapunov functional

* Corresponding author.
E-mail addresses: minzhao@mail.bnu.edu.cn (M. Zhao), ryuan@bnu.edu.cn (R. Yuan), zhaohaima@cugb.edu.cn

(Z. Ma), xzhao@mail.bnu.edu.cn (X. Zhao).
https://doi.org/10.1016/j.jde.2022.01.038
0022-0396/© 2022 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2022.01.038&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2022.01.038
http://www.elsevier.com/locate/jde
mailto:minzhao@mail.bnu.edu.cn
mailto:ryuan@bnu.edu.cn
mailto:zhaohaima@cugb.edu.cn
mailto:xzhao@mail.bnu.edu.cn
https://doi.org/10.1016/j.jde.2022.01.038


M. Zhao, R. Yuan, Z. Ma et al. Journal of Differential Equations 316 (2022) 552–598
1. Introduction

The population dynamics of each species will be affected by species interactions [41]. There 
are three main types of interactions when considering a system of two or more species, and 
especially when focusing on a system of two species. The first type is called a predator-prey 
system if the growth rate of one population (called the predator) is an increasing function of 
the other species (called the prey) abundance, while the growth rate of the prey population is a 
decreasing function of predator species abundance; the second one is called competition if the 
growth rate of each population is an decreasing function of the other species abundance; the third 
is called cooperation if the growth rate of each population is an increasing function of the other 
species abundance [7,41]. The predator-prey relationship among different species is widespread 
in a variety of ecosystems, such as marine ecosystems, terrestrial ecosystems, island ecosystems, 
and so on [31]. It is crucial to study the dynamics of the interactions between the predator and 
the prey in theoretical ecology [22].

In nature, predation exists in various species, such as mammals, birds, fish, insects and bacte-
ria, etc. [47]. There are many examples of the relationship between the predator and the prey, es-
pecially the biological invasion of the predator. A classic example is that in Central Europe from 
1909 to 1927, muskrats reproduced by capturing cattails, freshwater mussels, frogs, freshwater 
crayfish and small tortoises [47]. Another example is the invasion of the American continent by 
European starlings (Sturnus vulgaris) native to Europe, Asia and North Africa [43,47]. It is an 
omnivorous bird that feeds mainly on seeds, insects, invertebrates, plants and fruits. When they 
were artificially introduced into the American continent, they began to multiply, and are now dis-
tributed all over the world [43,47]. The third one is the jellyfish Mnemiopsis leidyi (commonly 
called Mnemiopsis) that invaded the Black Sea in the early 1980s. It is a pelagic fish native to 
the coastal waters of the United States along the Atlantic Ocean and feeds on eggs and larvae. 
Lack of predators for certain fishes and favorable environmental conditions (rich food, natural 
environment similar to the local areas) encouraged Mnemiopsis establishment in the Black Sea 
[25,31,46].

The interactions between the predator and the prey have become one of the main subjects of 
biological mathematics [47,48]. Pioneer work on this aspect began with Lotka [39] and Volterra 
[52], who proposed the Lotka-Volterra predator-prey model in 1921 and 1923, respectively. 
Bazykin [6] proposed a predator-prey model that included mortality due to predator density con-
straints in 1976. This type of mortality can regulate or limit the infinite growth of the predator 
[18]. For most complex predation processes in nature, affected by environmental factors, the 
predator and the prey have intraspecific competition, which means that the predator and the prey 
have density constraints [5,27]. In this paper, we mainly study the density-constrained predator-
prey system with logistic growth, which is more in line with biological significance.

Holling [20] proposed three Holling-type functional responses in 1965, which are very mean-
ingful and practical. Different species can be described by different functional response func-
tions. Holling type II (Michaelis-Menten) functional response is suitable for some carnivorous 
fish or invertebrates. In order to simulate the predation behavior more realistically, we study the 
propagation dynamics of the predator-prey system with Holling type II.

In a real environment, the predator and its prey are distributed in space. As the predator moves 
to capture the prey and the prey escapes from the predator, temporal and spatial changes in the 
population will occur [42]. In general, we use dispersal to describe the movement of organisms 
from one location to another, and this dispersal phenomenon exists in almost all biological and 
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ecology systems [4,24]. There are two important forms of dispersal in population dynamics, 
namely random dispersal, and nonlocal dispersal [4].

Random dispersal is governed by random walk, which is essentially a local behavior, de-
scribing that creatures can only move to their surrounding neighborhoods [4,24]. In this way, 
we can describe the dynamics of random dispersal through the reaction-diffusion model. In gen-
eral, the differential operators (such as �u) are used to model random dispersal. Many scholars 
have conducted a lot of research on biological and ecological models with random dispersal 
[8,10,14,47,49]. Ducrot et al. [14] mainly explored the propagation properties of a class of 
predator-prey systems with random dispersal.

However, some organisms in the ecosystem can travel for some distance, and their movement 
and interactions may occur between non-adjacent spatial locations [4,24,28,29]. This kind of 
dispersal is called nonlocal dispersal and is usually modeled by an appropriate integral operator, 
such as 

∫
R J (x − y)[u(y) − u(x)]dy. It is very important to study biological and population 

models of nonlocal dispersal. There are many studies on nonlocal dispersal population dynamics 
models to explain the spatial variation of interactions between different populations in biology, 
see [12,13,33,55]. The purpose of this paper is to study the predator and the prey co-invasions of 
the following Lotka-Volterra predator-prey system with nonlocal dispersal,

{
∂U
∂t

(x, t) = d1[(J1 ∗ U)(x, t) − U(x, t)] + r1U(x, t)(1 − U(x, t)) − bU(x,t)V (x,t)
1+αU(x,t)

,
∂V
∂t

(x, t) = d2[(J2 ∗ V )(x, t) − V (x, t)] + βbU(x,t)V (x,t)
1+αU(x,t)

− aV (x, t) − aV 2(x, t),
(1.1)

where x ∈ R, t > 0 and r1, b, β, a, α are all positive constants. Here U(x, t) and V (x, t) are 
the population densities of prey and predator species at spatial position x ∈ R and time t > 0, 
respectively. The dynamics of the prey population follow a logistic growth with a normalized (to 
one) carrying capacity and r1 denotes its intrinsic growth rate. The function U(x,t)V (x,t)

1+αU(x,t)
describes 

predation and is called the predator functional response to prey, where the parameter α measures 
the “satiation” effect of the predator population. The constant b denotes the predation rate and 
β denotes the biomass conversion rate coefficient. Thus βb denotes the biomass conversion rate. 
The parameter a denotes the death rate of the predator. d1 > 0 and d2 > 0 are the diffusion 
coefficients for prey and predator species, respectively. The term Ji ∗w −w describes the spatial 
dispersal process and

(Ji ∗ w)(x, t) − w(x, t) =
∫
R

Ji(x − y)w(y, t)dy − w(x, t), i = 1,2,

where the symbol ∗ denotes the convolution product for the spatial variable. Here we assume 
that the kernel function Ji : R → R(i = 1, 2) is continuous and satisfies the following properties:

(J1) Ji(x) = Ji(−x) ≥ 0 for any x ∈ R and
∫
R

Ji(x)dx = 1, i = 1, 2;

(J2)
∫
R

Ji(x)eλxdx < ∞ for any λ ≥ 0, i=1, 2;

(J3) Ji ∈ C1(R) and Ji is compactly supported, i=1, 2;
(J4) there exists � > 0 such that Ji(x) ≥ � for a.a. x ∈ (−�, �), i = 1, 2.
554



M. Zhao, R. Yuan, Z. Ma et al. Journal of Differential Equations 316 (2022) 552–598
System (1.1) is supplemented by the initial conditions:

U(x,0) = u0(x), V (x,0) = v0(x), x ∈ R, (1.2)

where u0(x), v0(x) are bounded nonnegative functions with the nonempty compact support. In 
addition, we assume that u0(x) and v0(x) are differentiable with respect to x, which ensures that 
the solutions of system (1.1) are differentiable with respect to x. Since u0(x) and v0(x) have 
nonempty compact support, the propagation of both species occurs in an initially empty envi-
ronment. This is similar to the “hair-trigger effect” of the scalar monostable equation [2]. In this 
paper, both predator and prey can be regarded as alien species invading into the initially empty 
environment. This phenomenon may occur in biological control, especially in the prevention and 
control of the invasion of alien species [31]. Predation can affect the spread of alien species, thus 
predation can be used as a biological control agent [31]. For example, Fagan and Bishop [15]
studied that herbivores slowed a plant reinvasion at Mount St. Helens after the eruption of Mount 
St. Helens in 1980.

Throughout this work, we give the following assumption about the parameters:

(H1) r2 := βb
1+α

− a > 0,

which ensures that the amount of prey is sufficient to maintain the positive density of predator. 
From system (1.1), we can see that the predator cannot survive without the prey.

At present, there are many studies on spreading speeds and the existence of traveling wave so-
lutions of the reaction-diffusion equations [1,2,11,14,16,17,26,35,40,53–55]. In particular, Kol-
mogorov, Petrovsky, and Piskunov [26], Fisher [17] studied the front propagation of Fisher-KPP 
type equations. Aronson and Weinberger [1,2] later proposed the concept of the spreading speed 
and studied the continuous and discrete time models. We refer to Li et al. [32], Lewis et al. [30], 
and Hu et al. [21] for the spreading speeds of cooperative systems. We refer to [36,44,45] for 
studies of the predator invasion with usual linear dispersal, to [14] for a study of the predator and 
the prey co-invasions with random dispersal. However, there are few research on the predator and 
the prey co-invasions with nonlocal dispersal. We refer to Zhang and Zhao [55] for the spreading 
speeds of a two-species strong competition system with nonlocal dispersal using the comparison 
principle of the system and the method of upper and lower solutions.

In this paper, we mainly consider the long-term behavior of the solutions of the predator-prey 
system with nonlocal dispersal, namely spreading speeds of the solutions of system (1.1) with 
initial conditions (1.2). The comparison principle of the nonlocal reaction-diffusion equations 
plays an important role in studying the argument. For nonlocal reaction-diffusion equations, Jin 
and Zhao [23] established the comparison principle in time periodic environment, Kao, Lou and 
Shen [24] mainly studied the comparison principle with specific kernel function in space periodic 
environment, Bates et al. [3] and Li et al. [34] respectively gave the comparison principle in 
space and time dependent environment. Based on the needs of research and the assumptions of 
the kernel function, we establish the general comparison principle of nonlocal reaction-diffusion 
equations in space and time dependent environment.

In addition, for the predator-prey system (1.1), the increase in the amount of predators will 
reduce the population of preys, while the increase in the population of preys will increase the 
amount of predators. Due to this asymmetry, the comparison principle and the theory related 
to monotone semiflows [37,38] cannot be applied in system (1.1). Therefore, this poses certain 
difficulties in studying the spreading properties of predator-prey systems. Inspired by the work of 
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Ducrot et al. [14] and Zhang et al. [55], we use the global boundedness property and the method 
of upper and lower solutions to study the asymptotic speed of propagation of system (1.1). In 
addition, we study the asymptotic behavior of the solution of system (1.1) by constructing a 
suitable Lyapunov functional. We conclude that under certain conditions, the predator and the 
prey respectively tend to a nontrivial equilibrium solution, that is, the two species coexist. This 
phenomenon is very common in nature, but it is difficult to verify due to the lack of comparison 
principle for the system and the nonlocal dispersal. Finally, we use MATLAB to simulate the 
propagation of the predator and the prey in two cases, namely the slow predator and the fast 
predator.

This paper is organized as follows. In the next section, we establish some preliminary results. 
In Section 3, we mainly consider the asymptotic speed of propagation of the predator and the 
prey in the case that the predator spreads slower than the prey. We get the results by constructing 
appropriate upper and lower solutions and using the comparison principle of the scalar equation. 
In Section 4, we consider the propagation behavior when the predator spreads faster than the 
prey. We study the asymptotic behavior of solutions by constructing the Lyapunov functional in 
Section 5. In Section 6, we use numerical simulations to illustrate the main results of this paper.

2. Preliminaries

In this section, we mainly introduce some preliminaries and main results. In subsection 2.1, 
we give the comparison principle of the nonlocal reaction diffusion equation which is essential 
to prove the spreading speeds of the predator and the prey (i.e. Theorems 3.1 and 4.1). Then, 
we give some results on spreading speeds and the existence of traveling wave solutions of the 
nonlocal reaction-diffusion equations in subsection 2.2.

Firstly, we define some space aspects. Let

X = {w(x)| w(x) : R→R is bounded and uniformly continuous},

with the norm

‖w‖X = sup
x∈R

|w(x)|.

Then (X, ‖ · ‖X) is a Banach space. The positive cone X+ is defined by

X+ = {w ∈ X : w(x) ≥ 0, ∀x ∈R}.

Furthermore, for any constant d > 0, let

Xd = {w ∈ X : 0 ≤ w(x) ≤ d, ∀x ∈ R}.

Set the order of the space X2 = X × X as follows:

w ≤ w ⇔ wi(x) ≤ wi(x), x ∈ R, i = 1,2,

for any w = (w1(x), w2(x)) and w = (w1(x), w2(x)) ∈ X2.
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We define the set H ⊂ X2 by

H = {(w1,w2) ∈ X2 : 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ r̂2},

where r̂2 := r2
a

. Our initial datum will always be chosen in the set of H . Here, we point out 
that the set H is positively invariant under the semiflow {S(t)}t≥0 generated by system (1.1). 
In particular, this means that system (1.1) with initial condition (1.2) admits a unique globally 
defined solution (U(x, t), V (x, t)) with

(U,V )(x, ·) ∈ C1([0,∞),X2), ∀x ∈R and (U,V )(·, t) ∈ H, ∀t ≥ 0.

2.1. Comparison principle

The comparison principle of nonlocal diffusion equations is crucial in the study of the spread-
ing speeds of system (1.1). Jin and Zhao [23] studied a scalar periodic logistic equation with 
nonlocal diffusion and established the comparison principle. Kao, Lou and Shen [24] established 
the comparison principle of the nonlocal diffusion equation in spatial periodic environment. 
Bates et al. [3] and Li et al. [34] studied the comparison principle of nonlocal diffusion equations 
in space or time dependent environment, respectively. Different from the above three works, we 
give the comparison principle of nonlocal diffusion system in space-time dependent media when 
the kernel function J satisfies (J1) and (J4), see Theorem 2.1. In particular, the assumptions of 
the kernel function J in Theorem 2.1 are different from Bates and Chen’s work [3], thus the 
corresponding proof of Theorem 2.1 is not the same.

Theorem 2.1. (Comparison principle) Assume that J satisfies (J1) and (J4), u ∈ C1([τ, t0], X). 
Suppose that u(x, t) satisfies

{
ut − c0ux − K0(x)u − d(J ∗ u − u) ≥ 0, (x, t) ∈R× (τ, t0],
u(x, τ ) ≥ 0, x ∈ R,

where K0(·) ∈ X, c0 �= 0, τ < t0 ∈R; d > 0 and c0 are constants. Then u(x, t) ≥ 0 on R ×[τ, t0]. 
Moreover, if u(x, τ) �≡ 0 on x ∈R, then u(x, t) > 0 on R × (τ, t0].

Proof. We may assume τ = 0. Let ū(x, t) = u (x − c0t, t). Then ū(x, t) satisfies

{
ūt − K̄0(x, t)ū − d(J ∗ ū − ū) ≥ 0, (x, t) ∈ R× (0, t0],
u(x,0) ≥ 0, x ∈R,

(2.1)

where K̄0(x, t) := K0(x − c0t) and K̄0(·, t) ∈ X for any t ∈ [0, t0]. As u is continuous, the 
function f (t) := infx∈R ū(x, t) is continuous in [0, t0]. Set g(t) = e−2Ktf (t) where K := 2d +
‖K0‖X . If the first conclusion of Theorem 2.1 is not true and due to g(0) ≥ 0, then there exist 
constants ε > 0, T ∈ (0, t0] such that g(T ) = inft∈[0,t0] g(t) = −ε, g(t) > −ε for 0 ≤ t < T , and 
there exists (x∗, t∗) ∈ R × (0, T ) such that ū(x∗, t∗) < − 31

32εe2Kt∗ . Therefore,

ū(x, t) > −εe2Kt in R× [0, T ), ū(x∗, t∗) < −31
εe2Kt∗ .
32
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Let z(x) be a smooth function in R satisfying minx∈R z(x) = z(x∗) = 1, supx∈R z(x) =
z(±∞) = 3 and 

∣∣z′(x)
∣∣≤ 1. Define

wσ (x, t) = −ε

(
3

4
+ σz(x)

)
e2Kt for σ ∈ [0,1].

Clearly, wσ is bounded and continuous in [0, 1] ×R × [0, t0]. Notice that, when σ ≤ 1/8,

inf
(x,t)∈R×[0,T ]

(ū − wσ )(x, t) ≤ ū(x∗, t∗) − wσ (x∗, t∗) < −31

32
εe2Kt∗ + ε

(
3

4
+ 1

8

)
e2Kt∗

= − 3

32
εe2Kt∗;

when σ > 1/4, for all (x, t) ∈R × [0, T ],

ū(x, t) − wσ (x, t) ≥ −εe2Kt + ε

(
3

4
+ σz(x)

)
e2Kt ≥ ε

(
3

4
+ σ − 1

)
e2Kt ≥ ε

(
σ − 1

4

)
.

Thus, there is a minimum σ ∗ ∈ ( 1
8 , 1

4

]
such that wσ ∗(x, t) ≤ ū(x, t) for (x, t) ∈ R × [0, T ]. We 

claim that there exist (xn, tn) ∈ R × [0, T ] and 
(
x̄0, t̄0

)
such that

lim
n→∞(xn, tn) = (x̄0, t̄0);

ūt (xn, tn) − K̄0(xn, tn)ū(xn, tn) − d(J ∗ ū − ū)(xn, tn) ≥ 0;
lim

n→∞[ū(xn, tn) − wσ ∗ (xn, tn)] = 0 = inf
(x,t)∈R×[0,T ]

[ū(x, t) − wσ ∗(x, t)];

and

lim
n→∞(ū − wσ ∗)t (xn, tn) ≤ 0.

Indeed, let v(x, t) = ū(x, t) − wσ ∗(x, t) and ρ(t) = infx∈R v(x, t). Then ρ(0) > 0. Let t̄0 =
max{t ∈ (0, T ] : ρ(τ) > 0 for all 0 ≤ τ < t}. Note that wσ ∗(±∞, t) ≤ − 9

8εe2Kt < ū(±∞, t) for 
t ∈ [0, T ] and ū(x, 0) ≥ 0 > −3ε/4 > wσ ∗(x, 0) for x ∈ R. For each t < t̄0, since ρ

(
t̄0
)= 0 <

ρ(t), there is a uniformly bounded set A 
(
t̄0, t
) ⊂ R such that v

(
x, t̄0

) ≤ ρ(t) and ū satisfies 
inequality (2.1) for all x ∈ A 

(
t̄0, t
)
. Therefore, for t̄n = t̄0 − 1

n
, we have 0 ≤ v(x, ̄tn) − v(x, ̄t0) =∫ 1

0 vt (x, ̄t0 + s(t̄n − t̄0))ds(t̄n − t̄0) for x ∈ A(t̄0, ̄tn). Therefore, there exist tn ∈ (t̄n, ̄t0) and a 
bounded sequence xn ∈ A(t̄0, ̄tn) such that vt (xn, tn) ≤ 0. After taking a subsequence of xn, 
we assume that the limit of xn exists and x̄0 := limn→∞ xn. Then |v (xn, tn) | ≤ ∣∣v (xn, t̄0

)∣∣ +∣∣v (xn, tn) − v
(
xn, t̄0

)∣∣ ≤ ∣∣v (xn, t̄0
)∣∣ + ‖vt‖X

(
t̄0 − tn

) → 0 where we have used the fact that ∣∣v (xn, t̄0
)∣∣≤ ρ

(
t̄n
)→ 0. This proves the claim.
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Therefore,

0 ≥ lim
n→∞ (ū − wσ ∗)t (xn, tn)

≥ d(J ∗ ū)
(
x̄0, t̄0

)− (d − K̄0(x, t))ū(x̄0, t̄0) + 2Kεe2Kt̄0

(
σ ∗z (x̄0) + 3

4

)

≥ −dεe2Kt̄0 − (d + ‖K̄0‖X)|ū(x̄0, t̄0)| + 7

4
Kεe2Kt̄0

≥ −dεe2Kt̄0 − 3

2
ε(d + ‖K̄0‖X)e2Kt̄0 + 7

4
Kεe2Kt̄0

= εe2Kt̄0

[
7

4
K − d − 3

2
(d + ‖K̄0‖X)

]
> 0

which is a contradiction. Therefore u(x, t) ≥ 0 on (x, t) ∈ R × [τ, t0].
Now we give the proof of the last part of the theorem. Let v̄(x, t) = eKt ū(x, t) (K is given 

above, i.e. K = 2d + ∥∥K̄0
∥∥

X

)
. Since ū(x, t) satisfies (2.1), then we have

v̄t (x, t) − (K + K̄0(x, t))v̄(x, t) − d(J ∗ v̄ − v̄)(x, t) ≥ 0, (x, t) ∈R× (0, t0] . (2.2)

If u(x, 0) �≡ 0 in R, then we have v(x, 0) ≥, �≡ 0, for x ∈R.
To complete the proof, it suffices to show that u(x, t) > 0 for (x, t) ∈ R × (0, t0]. Suppose 

that there exist some x∗ ∈ R, t∗ > 0 such that

v̄
(
x∗, t∗

)= 0. (2.3)

Here t∗ �= 0, otherwise the initial function u(x, 0) may equal to 0. Thus, t∗ = 0 is not considered. 
Since v̄(x, t) ≥ 0 on R × (0, t0], then we have

v̄
(
x∗, t∗

)≤ v̄(x, t) for (x, t) ∈R× (0, t0] . (2.4)

It follows from (2.4) that

∂v̄

∂t

(
x∗, t

)∣∣∣∣
t=t∗−

≤ 0. (2.5)

By (2.2), (2.3), (J1) and recall that K = 2d + ∥∥K̄0
∥∥

X
, we obtain that

v̄t (x
∗, t∗) ≥ (K + K̄0(x

∗, t∗) − d)v̄(x∗, t∗) + d(J ∗ v̄)(x∗, t∗)

≥ 0. (2.6)

Then (2.5) and (2.6) imply that

v̄t

(
x∗, t∗

)= 0. (2.7)

It follows from (2.2) and (2.7) that
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d(J ∗ v̄ − v̄)
(
x∗, t∗

)≤ 0.

On the hand, using (2.4) and (J1), we have that

d(J ∗ v̄ − v̄)
(
x∗, t∗

)= d

⎡
⎣∫
R

J
(
x∗ − y

)
v̄
(
y, t∗

)
dy − v̄

(
x∗, t∗

)⎤⎦
≥ d

[
v̄
(
x∗, t∗

)− v̄
(
x∗, t∗

)]
= 0.

Therefore,

∫
R

J
(
x∗ − y

) (
v̄
(
y, t∗

)− v̄
(
x∗, t∗

))
dy = 0.

Then, by (J4), for all y ∈ (−� + x∗, � + x∗), we have that

v̄
(
y, t∗

)= v̄
(
x∗, t∗

)
. (2.8)

By the same arguments, for an arbitrary x1 ∈ ∂ (x∗ − �,x∗ + �), we obtain (2.8), for all y ∈
(x1 − �,x1 + �). Hence, (2.8) holds for all y ∈ (x∗ − 2�,x∗ + 2�). As a result, (2.8) holds, for 
all y ∈ R. Therefore, v̄ (·, t∗) is a constant, i.e.

v̄
(
x, t∗

)= v̄
(
x∗, t∗

)= 0, x ∈R.

Hence, by (2.2) for x ∈ R,

−v̄(x,0) = v̄
(
x, t∗

)− v̄(x,0)

≥ d

t∗∫
0

∫
R

J (x − y)v̄(y, t)dydt +
t∗∫

0

(
K − ∥∥K̄0

∥∥
X

− d
)
v̄(x, t)dt

= d

t∗∫
0

∫
R

J (x − y)v̄(y, t)dydt + d

t∗∫
0

v̄(x, t)dt ≥ 0.

This implies that ū(x, 0) ≡ 0 for x ∈ R, which is a contradiction. Therefore, ū(x, t) > 0 on 
R × (0, t0]. Thus u(x, t) > 0 on R × (0, t0]. This completes the proof. �

Jin and Zhao [23] gave the comparison principle of a scalar periodic logistic equation with 
nonlocal diffusion, see Corollary 2.2.

Corollary 2.2. ([23]) Let w̄(x, t) and w(x, t) be upper and lower solutions of the following 
periodic equation:
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∂w

∂t
(x, t) = d(t)

∫
R

J (x − y)w(y, t)dy + F(w(x, t), t), x ∈ R, t > 0,

with w̄(·, t), w(·, t) ∈ Xs for all t > 0. Here the two continuous functions F and d are ω-periodic 
in t for some ω > 0, d(t) ≥ 0 and d(t) �≡ 0, kernel J satisfies (J1)-(J2) and the initial data 
w̄(·, 0), w(·, 0) ∈ Xs admit a nonempty compact support. Moreover, assume that there exists 
L > 0 such that |F(w̄, t) −F(w, t)| ≤ L|w̄ −w| for all t ≥ 0. If w̄(·, 0) ≥ w(·, 0), then w̄(·, t) ≥
w(·, t) for all t ≥ 0.

For our purpose, we would like to present a comparison principle for the following equation 
with constant coefficients:{

∂w
∂t

(x, t) = d(J ∗ w − w) + rw(x, t)(s − w(x, t)), x ∈ R, t > 0,

w(x,0) = χ(x), x ∈R,
(2.9)

where kernel J satisfies (J1)-(J2) and the initial data χ ∈ Xs admits a nonempty compact support. 
The parameters satisfy d > 0, r > 0 and s > 0.

Proposition 2.3. Let w be a solution of (2.9) with w(·, t) ∈ Xs for all t > 0 for a given χ ∈ Xs . 
If z(·, t) ∈ Xs and z(x, t) satisfies

{
∂z
∂t

(x, t) ≥ d(J ∗ z − z) + rz(x, t)(s − z(x, t)), x ∈R, t > 0,

z(x,0) ≥ χ(x), x ∈R,

then z(x, t) ≥ w(x, t) for all x ∈R, t > 0. Similar result holds for the reverse inequality.

Kao, Lou and Shen [24] gave the following comparison principle for nonlocal reaction-
diffusion equation.

Corollary 2.4. ([24]) Let p1, p2, · · · , pN be given positive constants and

YP =
{
v ∈ C

(
RN
)

|v (x1, · · · , xn−1, xn + pn, xn+1, · · · , xN)

= v (x1, · · · , xn−1, xn, xn+1, · · · , xN) ,n = 1,2, · · · ,N}
with the norm ‖v‖YP

= supx∈RN |v(x)|. Assume that v̄(x, t) and v(x, t) ∈ YP are super-solution 
and sub-solution of

∂v

∂t
=
∫
R

1

δN
J

(
x − y

δ

)
vdy − v + vg(x, v), (x, t) ∈RN × [0,∞),

with v̄(x, 0) = v̄0(x) ∈ YP and v(x, 0) = v0(x) ∈ YP , respectively. Here δ > 0, J (·) ∈ C∞ (RN
)

is defined by

J (x) =
{

C exp
(

1
|x|2−1

)
for |x| < 1,

0 for |x| ≥ 1,
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where C > 0 is chosen such that 
∫
RN J (x)dx = 1. Moreover, g is a smooth function and 

satisfies g(x1, · · · , xn−1, xn +pn, xn+1, · · · , xN, v) = g(x1, · · · , xn−1, xn, xn+1, · · · , xN, v)(n =
1, 2, · · · , N), g(x, 0) > 0 and gv(x, v) := ∂g(x,v)

∂v
< 0 for x ∈ RN and v ≥ 0, and g(x, v) < 0 for 

x ∈ RN and v > 1. If v0 ≤ v̄0, then v (·, t) ≤ v̄ (·, t) for 0 ≤ t < ∞. Moreover v (·, t) < v̄ (·, t) if 
v0 �= v̄0.

2.2. Some results for spreading speed and eigenvalue

In this subsection, we mainly recall some results for spreading speed and eigenvalue. First, 
according to the research of [23], we obtain that system (2.9) has the following spreading speed.

Proposition 2.5. Let w be a solution of (2.9) with w(·, t) ∈ Xs for all t > 0 for a given χ ∈ Xs

and c̄ := inf0<λ<+∞
d
[∫

R J (x)eλxdx−1
]+rs

λ
> 0. Then the following statements are valid.

(i) For any c > c̄, if χ has a nonempty compact support, then

lim
t→∞ sup

|x|>ct

w(x, t) = 0;

(ii) For any 0 < c < c̄, if χ(·) �≡ 0, then

lim inf
t→∞ inf|x|<ct

w(x, t) = s.

Next, we consider the wave profile problem. The following lemma gives the existence of 
traveling wave solutions when the wave speed c > c∗.

Lemma 2.6. ([9], [55]) Assume that J ≥ 0 is even, compactly supported and 
∫
R J (x)dx = 1. 

Consider the system

{
J ∗ u − u + cu′ + f (u) = 0,

u(−∞) = 1, u(+∞) = 0,
(2.10)

where the smooth function f satisfies

f (0) = f (1) = 0, f (s) > 0 for s ∈ (0,1), f ′(0) > 0 and f ′(s) < f ′(0) for s ∈ (0,1).

Then for any c ≥ c∗ := inf0<λ<+∞
∫
R J (y)eλydy−1+f ′(0)

λ
> 0, system (2.10) has a unique (up to a 

shift of origin) smooth and monotonically decreasing solution u(ξ), ξ := x − ct ∈R.

Now we consider the eigenvalue problem

{
(J ∗ u)(x) − u(x) = −λu, x ∈ �,

u(x) = 0, x ∈ R\�,
(2.11)

where � ⊂R is a bounded interval.
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Lemma 2.7. ([19, Theorem 2.1]) Assume that the kernel J ∈ C(R), compactly supported and 
satisfies (J1). Then the problem (2.11) admits an eigenvalue λ1(�) associated with a positive 
eigenfunction φ1 ∈ C(�). Moreover, it is simple and unique, and satisfies 0 < λ1(�) < 1.

Lemma 2.8. ([19, Theorem 1.4]) For the principal eigenvalue λ1(�) of problem (2.11), we have 
λ1(�) → 1 as |�| → 0, and λ1(�n) → 0 as �n → R.

Define

cU := inf
0<λ<+∞

d1
[∫

R J1(x)e−λxdx − 1
]+ r1

λ
, (2.12)

cV := inf
0<λ<+∞

d2
[∫

R J2(x)e−λxdx − 1
]+ r2

λ
, (2.13)

and consider the functions

�1(λ, c) := d1

⎡
⎣∫
R

J1(x)e−λxdx − 1

⎤
⎦− cλ + r1,

�2(λ, c) := d2

⎡
⎣∫
R

J2(x)e−λxdx − 1

⎤
⎦− cλ + r2.

Then, it is easy to see that λ → �i(λ, c), (i = 1, 2) is strictly convex with respect to λ for each 
given c. Moreover, due to r2 > 0 and the definitions of cU and cV in (2.12) and (2.13) respec-
tively, it enjoys the following properties.

Lemma 2.9. Assume that the kernel J1 (or J2) satisfies (J1)-(J2), then the following statements 
hold.

(i) If c > cU (or cV ), then the equation �1(λ, c) = 0 (or �2(λ, c) = 0) has two positive roots 
λ1(c), λ2(c), and 0 < λ1(c) < λ2(c) < +∞. Moreover, �1(λ, c) < 0 (or �2(λ, c) < 0), if 
λ ∈ (λ1(c), λ2(c)). �1(λ, c) > 0 (or �2(λ, c) > 0), if λ ∈ (0, λ1(c)) ∪ (λ2(c), +∞).

(ii) If 0 < c < cU (or cV ), then �1(λ, c) > 0 (or �2(λ, c) > 0) for all λ ∈ (0, +∞).
(iii) If c = cU (or cV )> 0, then �1(λ, cU ) ≥ 0 (or �2(λ, c) ≥ 0) for any λ ∈ (0, +∞) and 

�1(λ, cU ) = 0 (or �2(λ, c) = 0) has a unique root λ∗.

3. Slow predator case

In this section, we consider the case when the predator spreads slower than the prey and 
establish the following theorem.

Theorem 3.1. (Slow predator) Assume that (J1), (J3)-(J4) and (H1) hold. Let u0, v0 be two given 
nontrivial compactly supported functions such that (u0, v0) ∈ H . In addition, we assume that 
d1 > r1 + br̂2 + b

2 + βbr̂2 and d2 > βb − a + βbr̂2 + b
2 .

If cV < cU , then the solution (U, V ) ≡ (U(x, t), V (x, t)) of (1.1) with initial data (u0, v0)

satisfies the following statements.
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(i) For any c > cU , then

lim
t→∞ sup

|x|>ct

U(x, t) = 0.

(ii) For any cV < c1 < c2 < cU and each c > cV , one has:

lim
t→∞ sup

c1t<|x|<c2t

|1 − U(x, t)| + sup
|x|>ct

V (x, t) = 0.

(iii) There exists ε > 0 such that for each c ∈ [0, cV ), one has

lim inf
t→∞ inf|x|≤ct

V (x, t) ≥ ε,

lim sup
t→∞

sup
|x|≤ct

U(x, t) ≤ 1 − ε and lim inf
t→∞ inf|x|≤ct

U(x, t) ≥ ε.

We divide the proof of Theorem 3.1 into four subsections. In subsection 3.1, we will show that 
the prey U cannot spread faster than cU . In subsection 3.2, we will prove that U converges to 1
and V is close to 0 as t → ∞ in the case c > cV and cV < c1 < c2 < cU . In the case 0 ≤ c < cV , 
we will prove that U and V remain uniformly positive in subsection 3.3. In subsection 3.4, we 
complete the proof of Theorem 3.1 by giving the proof of Claim∗ introduced in subsection 3.3.

In the rest of this section, we always assume cV < cU , (J1), (J3)-(J4) and (H1) hold.

3.1. Spreading of U for c > cU

Proposition 3.2. If c > cU , then

lim
t→∞ sup

|x|>ct

U(x, t) = 0. (3.1)

Proof. Since U ≥ 0 and V ≥ 0, the function U satisfies

∂U

∂t
(x, t) ≤ d1(J1 ∗ U − U)(x, t) + r1U(x, t)(1 − U(x, t)).

Applying Proposition 2.3, we have U(x, t) ≤ U(x, t) for all (x, t) ∈ R × [0, ∞), where the 
function U is the solution of the following system

{
∂U
∂t

(x, t) = d1(J1 ∗ U − U)(x, t) + r1U(x, t)(1 − U(x, t)),

U(x,0) = u0(x).

According to the comparison principle and Proposition 2.5, we get that

∀c > cU , lim
t→∞ sup

|x|>ct

U(x, t) ≤ lim
t→∞ sup

|x|>ct

U(x, t) = 0. (3.2)

Since U is nonnegative, thus we prove (3.1). �
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3.2. Spreading of U and V for c > cV and cV < c1 < c2 < cU

Proposition 3.3. For any cV < c1 < c2 < cU and each c > cV one has:

lim
t→∞ sup

c1t<|x|<c2t

|1 − U(x, t)| + sup
|x|>ct

V (x, t) = 0.

Proof. Since U ≤ 1 and the function βbU
1+αU

increases monotonically with respect to U , we obtain 
that

∂V

∂t
(x, t) ≤ d2(J2 ∗ V − V )(x, t) + V (x, t)

[
βb

1 + α
− a − aV (x, t)

]
.

By Proposition 2.3, we have

V (x, t) ≤ V (x, t), for all (x, t) ∈ R× [0,∞), (3.3)

where the function V is the solution of the following equations:

{
∂V
∂t

(x, t) = d2(J2 ∗ V − V )(x, t) + aV (x, t)(r̂2 − V (x, t)),

V (x,0) = v0(x),
(3.4)

where r̂2 = r2
a

= 1
a
(

βb
1+α

− a). It follows from Proposition 2.5 that for all c > cV

lim
t→∞ sup

|x|>ct

V (x, t) ≤ lim
t→∞ sup

|x|>ct

V (x, t) = 0.

Since V ≥ 0, we have for all c > cV ,

lim
t→∞ sup

|x|>ct

V (x, t) = 0. (3.5)

Next, we only need to prove that for any cV < c1 < c2 < cU ,

lim
t→∞ sup

c1t<|x|<c2t

|1 − U(x, t)| = 0. (3.6)

To prove (3.6), we give the following lemma.

Lemma 3.4. Let d1 > r1 + br̂2 + b
2 + βbr̂2 and d2 > βb − a + βbr̂2 + b

2 . For any c ∈ (cV , cU ), 
we have

lim
t→+∞U(x + ct, t) = 1

uniformly on every compact subset of R.
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Proof. First, we choose c ∈ (cV , cU ). According to the definition of V (x, t) and (3.5), there is 
some Xε > 0 such that

V (x, t) ≤ ε, for all (x, t) such that |x| ≥ Xε + ct.

We divide the proof into three steps.
Step 1. Taking c′ ∈ (c, cU ), we claim that there exist l2 > 0, x1 ∈ R and η1 > 0 such that

lim inf
t→∞ inf

x∈(−l2, l2)
U

(
x + ct + x1,

ct

c′

)
≥ η1. (3.7)

Let l2 > 0, η > 0 and α1 > 0. We take x1 = Xε + 2l2. Define

U(x, t) := ηe−α1(x−c′t)ψ2l2(x − c′t − x1), (3.8)

where

ψ2l2(x) =
{

cos
(

πx
4l2

)
, x ∈ (−2l2,2l2),

0, x ∈R \ (−2l2,2l2).
(3.9)

Next, we prove that U is a sub-solution of the U -equation in system (1.1). Indeed, we have 
U(x, t) > 0 for −2l2 < x − c′t − x1 < 2l2 and t ∈ [0, +∞). Consider the following operators for 
(x, t) ∈ (−2l2 + c′t + x1, 2l2 + c′t + x1) × [0, +∞)

Q[W ](x, t) := − ∂tW(x, t) + d1

⎡
⎣∫
R

J1(x − y)W(y, t)dy − W(x, t)

⎤
⎦

+ W(x, t)

[
r1(1 − W(x, t)) − bε

1 + αW(x, t)

]
,

and

L[W ](x, t) := −∂tW(x, t) + d1

∫
R

J1(x − y)W(y, t)dy + mW(x, t), (3.10)

where m will be determined later. We claim that for l2 large enough

J1 ∗ U(x, t) =η

2l2+c′t+x1∫
−2l2+c′t+x1

J1(x − y)e−α1(y−c′t) cos

(
π(y − c′t − x1)

4l2

)
dy

≥η

∞∫
−∞

J1(x − y)e−α1(y−c′t) cos

(
π(y − c′t − x1)

4l2

)
dy. (3.11)

Indeed, due to anyhow J1 ∗U(x, t) ≥ 0, we take without loss of generality that x ∈ (−2l2 + c′t +
x1, 2l2 + c′t + x1). In order to make (3.11) hold we have to show that for y ∈ R \ (−2l2 + c′t +
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x1, 2l2 + c′t + x1) either cos
(

π(y−c′t−x1)
4l2

)
≤ 0 or J1(x − y) = 0. We assume J1 has a compact 

support, then there exists B̃ such that supp J1 ⊂ [−B̃, B̃]. If x ∈ (−2l2 + c′t + x1, 2l2 + c′t + x1)

and |x − y| ≤ B̃ , then y ∈ (−2l2 + c′t + x1 − B̃, 2l2 + c′t + x1 + B̃) which implies that y − c′t −
x1 ∈ (−2l2 − B̃, 2l2 + B̃) ⊂ (−6l2, 6l2) when B̃ ≤ 4l2. Thus, we obtain that cos

(
π(y−c′t−x1)

4l2

)
≤

0 for y − c′t − x1 ∈ [−6l2, −2l2] ∪ [2l2, 6l2]. Moreover, since supp J1 ⊂ [−B̃, B̃] ⊂ (−4l2, 4l2)

when B̃ < 4l2, we obtain that J1(x − y) = 0 for y ∈R \ (−6l2 + c′t + x1, 6l2 + c′t + x1). Thus, 
we deduce that

η

∞∫
−∞

J1(x − y)e−α1(y−c′t) cos

(
π(y − c′t − x1)

4l2

)
dy

=
( −6l2+c′t+x1∫

−∞
+

−2l2+c′t+x1∫
−6l2+c′t+x1

+
2l2+c′t+x1∫

−2l2+c′t+x1

+
6l2+c′t+x1∫

2l2+c′t+x1

+
∞∫

6l2+c′t+x1

)
J1(x − y)ηe−α1(y−c′t) cos

(
π(y − c′t − x1)

4l2

)
dy

≤η

2l2+c′t+x1∫
−2l2+c′t+x1

J1(x − y)e−α1(y−c′t) cos

(
π(y − c′t − x1)

4l2

)
dy.

Substituting (3.8) into (3.10) and using (3.11), we obtain that

L[U ](x, t) ≥c′
[
−α1ηe−α1(x−c′t)ψ2l2(x − c′t − x1) − πη

4l2
e−α1(x−c′t) sin

(
π(x − c′t − x1)

4l2

)]

+ mU(x, t) + d1η

∞∫
−∞

J1(x − y)e−α1(y−c′t) cos

(
π(y − c′t − x1)

4l2

)
dy

=
⎡
⎣−c′α1 + m + d1

∫
R

eα1yJ1(y) cos

(
πy

4l2

)
dy

⎤
⎦U(x, t)

+
⎡
⎣− π

4l2
c′ + d1

∫
R

eα1yJ1(y) sin

(
πy

4l2

)
dy

⎤
⎦ηe−α1(x−c′t) sin

(
π(x − c′t − x1)

4l2

)
.

Therefore, L1
[
U
]
(x, t) > 0 on x − c′t − x1 ∈ (−2l2, 2l2) and t ∈ [0, +∞) if the following two 

conditions are satisfied:

c′ < 1

α1

⎡
⎣m + d1

∫
R

eα1yJ1(y) cos

(
πy

4l2

)
dy

⎤
⎦=:Am(α1, l2), (3.12)
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c′ = 4l2d1

π

⎡
⎣∫
R

eα1yJ1(y) sin

(
πy

4l2

)
dy

⎤
⎦=: B(α1, l2). (3.13)

We first show some properties of the functions Am and B. As l2 → ∞, we have locally uniform 
convergence of

Am(α1, l2) → Am(α1) = m + d1
∫
R eα1yJ1(y)dy

α1
, B(α1, l2) → B(α1) := d1

∫
R

yeα1yJ1(y)dy.

Differentiation yields

A′
m(α1) = (B(α1) − Am(α1)) /α1, (3.14)

B ′(α1) = d1

∫
R

J (y)eα1yy2dy > 0.

It follows from the properties of the function Am(α1) that it achieves infimum. Then, there exists 
α∗

1 > 0 such that Am(α∗
1) = infα1>0 Am(α1). By the definition of α∗

1 and (3.14), we have that 
B(α∗

1) = Am(α∗
1). Since B is an increasing function, thus B(α1) < B(α∗

1) for 0 < α1 < α∗
1 . Then 

we have

Am(α1) > Am(α∗
1) = B(α∗

1) > B(α1) for 0 < α1 < α∗
1 . (3.15)

In addition, we define c∗ := Am∗(α∗
1) with m∗ = r1 − d1 − bε − r1δ and r1 − bε − r1δ > 0 for 

small enough constant δ > 0. We can choose m < m∗ such that c′ < Am(α∗
1) < Am∗(α∗

1) = c∗ <

cU . Note that B(0) < c∗ and B(0) = 0, then we have c′ > B(0). Therefore, combined with (3.15), 
we can choose ĉ1, ĉ2, δ1, l2 > 0 such that

B(ĉ1) + δ1 < c′ < B(ĉ2) − δ1 and |B(α1, l2) − B(α1)| < δ1.

By the continuity of B(α1, l2) and B(α1), there exists some α1(l2) such that B(α1(l2), l2) = c′
for all large enough l2. We can also choose l2 large enough such that Am(α1(l2), l2) > c′. Thus, 
we prove that (3.12) and (3.13) hold true.

Therefore we have L1[U ](x, t) > 0 for x − c′t − x1 ∈ (−2l2, 2l2) and t ∈ [0, +∞). Note that

r1W(x, t)(1 − W(x, t)) − bεW(x, t)

1 + αW(x, t)
≥ (r1 − r1δ − bε)W(x, t) for 0 ≤ W(x, t) ≤ δ.

Note that m < r1 − d1 − bε − r1δ implies that

Q
[
U
]
(x, t) > L1

[
U
]
(x, t) > 0 for x − c′t − x1 ∈ (−2l2,2l2) and t ∈ [0,∞),

namely, for x − c′t − x1 ∈ (−2l2, 2l2) and t ∈ [0, ∞), we have that

∂tU(x, t) − d1(J1 ∗ U(x, t) − U(x, t)) − U(x, t)

(
r1 − r1U(x, t) − bε

)
< 0.
1 + αU(x, t)
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Furthermore since supp ψ2l2 ⊂ [−2l2, 2l2], we have for (x, t) ∈R × [0, +∞)

∂tU(x, t) − d1(J1 ∗ U(x, t) − U(x, t)) − U(x, t)

(
r1 − r1U(x, t) − bε

1 + αU(x, t)

)
≤ 0.

Since function u0(x) is not trivial, one can make use of comparison principle to get that 0 <
U(x, t) < 1 for all x ∈ R and t > 0. Thus, for any fixed t0 > 0, we reduce η such that for x ∈ R
and t ≥ t0, U(x, t0) ≥ U(x, t0). Then, by comparison principle, we obtain that

U
(
x,

ct

c′
)

≥ U
(
x,

ct

c′
)

= ηe−α1(x−ct)ψ2l2(x − ct − x1) = U(x − ct,0).

The claim (3.7) can be obtained by taking

η1 = ηe−α1(Xε+3l2) min
x∈[−l2,l2]

ψ2l2(x).

Step 2. We now claim that there exist l2 > 0, η2 > 0 and x3 ∈ R such that

lim inf
t→∞ inf

x∈(− l2
2 ,

l2
2 ),t ′∈[ ct

c′ ,t]
U(x + ct + x3, t

′) ≥ η2. (3.16)

Define

W(x) := η′ψ̂l2(x − x1),

where η′ > 0 will be determined later and ψ̂l2 is the eigenvalue function of the following eigen-
value problem

⎧⎪⎨
⎪⎩

(J1 ∗ ψ̂l2)(x) − ψ̂l2(x) = −λ̂l2ψ̂l2(x), x ∈ (−l2, l2),

ψ̂l2(x) = 0, x ∈R\(−l2, l2),

‖ψ̂l2‖∞ = 1.

Then, for any t ′ ∈ [ ct
c′ , t
]
, we have

∂W

∂t ′
(x) − d1(J1 ∗ W − W)(x) − r1W(x)

(
1 − W(x) − bV (x, t ′)

r1(1 + αW(x))

)

≤∂W

∂t ′
(x) − d1(J1 ∗ W − W)(x) − r1W(x)

(
1 − W(x) − bε

r1

)

= − W(x)

[
−d1λ̂l2 + r1

(
1 − W(x) − bε

r1

)]

≤0.

The last inequality is obtained by assuming r1 − d1λ̂l2 − bε > 0 (increasing l2 if necessary) and 
taking η′ < 1 − d1 λ̂l − bε . It can be deduced from (3.7) that for t large enough and x ∈ (−l2, l2), 
r1 2 r1
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one has U(x + ct + x1, ctc′ ) ≥ η1. Thus, we can reduce η′ such that U(x + ct + x1, ctc′ ) ≥ W(x +
x1) = η′ψ̂l2 . Then, by comparison principle,

U ≥ W, ∀x ∈ R and t ′ ∈
[ct
c′ , t

]
.

Therefore, by taking x3 = x1 and η2 = η′ min
x∈[− l2

2 ,
l2
2 ] ψ̂l2(x), we know that (3.16) holds.

Step 3. We complete the proof of Lemma 3.4. Let {tn}n∈Z be such that tn → ∞, as n → ∞. 
Define {

Un(x, t) = U (x + ctn, t + tn) ,

Vn(x, t) = V (x + ctn, t + tn) ,

for (x, t) ∈ R × [−tn,+∞). It is clearly that (Un(x, t),Vn(x, t)) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂Un

∂t
(x, t) = d1 [(J1 ∗ Un) (x, t) − Un(x, t)] + Un(x, t)

[
r1(1 − Un(x, t)) − bVn(x,t)

1+αUn(x,t)

]
,

∂Vn

∂t
(x, t) = d2 [(J2 ∗ Vn) (x, t) − Vn(x, t)] + Vn(x, t)

[
βbUn(x,t)

1+αUn(x,t)
− a − aVn(x, t)

]
,

Un (x,−tn) = U (x + ctn,0) ,Vn (x,−tn) = V (x + ctn,0) .

Next, we will give some priori estimates of (Un(x, t), Vn(x, t)) uniformly in n, which allow us 
to reach to the limit as n → +∞. Since 0 ≤ U(x, 0) = u0 ≤ 1, 0 ≤ V (x, 0) = v0 ≤ r̂2, we have 
0 ≤ Un(x, −tn) ≤ 1, 0 ≤ Vn(x, −tn) ≤ r̂2. Hence, 0 ≤ Un(x, t) ≤ 1, 0 ≤ Vn(x, t) ≤ r̂2. Thus, 
there exist positive constants Di, i = 1, 2, . . . , 4, such that for (x, t) ∈R ×[−tn, +∞) and n ∈Z,

∣∣∣ ∂Un

∂t

∣∣∣≤ d1 |J1 ∗ Un| + d1 |Un| + |Un|
[
r1(1 + |Un|) + b|Vn|

|1+αUn|
]

≤ 2d1 + (2r1 + br̂2) =: D1,∣∣∣ ∂Vn

∂t

∣∣∣≤ d2 |J2 ∗ Vn| + d2 |Vn| + |Vn|
[

βb|Un|
|1+αUn| + a + a |Vn|

]
≤ r̂2

(
2d2 + βb + a + ar̂2

)=: D2,

and ∣∣∣∣∂2Un

∂t2

∣∣∣∣≤ d1|J1 ∗ (Un)t )| + d1|(Un)t | + |(Un)t |
[
r1(1 + |Un|) + b|Vn|

|1 + αUn|
]

+ |Un|
[
r1(1 + ∣∣(Un)t

∣∣) + b

∣∣∣∣
(

Vn

1 + αUn

)
t

∣∣∣∣
]

≤2d1D1 + D1(2r1 + br̂2) + r1(1 + D1) + b[D2 + αD2 + αr̂2D1] =: D3,∣∣∣∣∂2Vn

∂t2

∣∣∣∣≤2d2D2 + D2
(
βb + a + ar̂2

)+ r̂2[βbD1 + aD2] =: D4.

For any γ > 0, define

⎧⎨
⎩
Un,γ (x, t) := Un(x + γ, t) − Un(x, t),

Vn,γ (x, t) := Vn(x + γ, t) − Vn(x, t),

J̃i (x) := Ji(x + γ ) − Ji(x), i = 1,2.

Since Ji satisfies (J1) and (J3), then J ′ ∈ L1, there exists Li > 0, i = 1, 2, such that
i
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∫
R

∣∣∣J̃i (x − y)

∣∣∣dy =
∫
R

|Ji(x + γ − y) − Ji(x − y)|dy

= |γ |
∫
R

∣∣∣∣∣∣
1∫

0

J ′
i (x − y + θγ )dθ

∣∣∣∣∣∣dy

≤ |γ |
1∫

0

∫
R

∣∣J ′
i (x − y + θγ )

∣∣dydθ ≤ Li |γ |.

Hence, for any η > 0, there exists δi = η
Li

> 0 such that 
∫
R |J̃i (x − y)|dy ≤ η provided that 

|γ | ≤ δi, x ∈ R, i = 1, 2. Then it can be verified that

∂

∂t
U2

n,γ (x, t) = 2Un,γ (x, t)
∂Un,γ

∂t
(x, t)

= 2Un,γ (x, t)
(
d1

∫
R

J̃1(x − y)Un(y, t)dy − (d1 − r1)Un,γ (x, t)

− r1Un,γ (x, t)(Un(x + γ, t) + Un(x, t)) − bVn(x + γ, t)

1 + αUn(x + γ, t)
Un,γ (x, t)

+ bαUn(x, t)Vn(x, t)Un,γ (x, t)

[1 + αUn(x + γ, t)][1 + αUn(x, t)] − bUn(x, t)Vn,γ (x, t)

1 + αUn(x + γ, t)

)

≤ 2Un,γ (x, t)
(
d1

∫
R

J̃1(x − y)Un(y, t)dy − (d1 − r1)Un,γ (x, t)

− r1Un,γ (x, t)(Un(x + γ, t) + Un(x, t)) − bVn(x + γ, t)

1 + αUn(x + γ, t)
Un,γ (x, t)

+ bαUn(x, t)Vn(x, t)Un,γ (x, t)

[1 + αUn(x + γ, t)][1 + αUn(x, t)]
)

+ bUn(x, t)

1 + αUn(x + γ, t)

(
U2

n,γ (x, t) + V2
n,γ (x, t)

)

≤ 4d1η − 2

(
d1 − r1 − br̂2 − b

2

)
U2

n,γ (x, t) + bV2
n,γ (x, t), (3.17)

and

∂

∂t
V2

n,γ (x, t) = 2Vn,γ (x, t)
∂Vn,γ

∂t
(x, t)

= 2Vn,γ (x, t)
(
d2

∫
R

J̃2(x − y)Vn(y, t)dy − (d2 + a)Vn,γ (x, t)

− a(Vn(x + γ, t) + Vn(x, t))Vn,γ (x, t) + βbUn(x, t) Vn,γ (x, t)

1 + αUn(x + γ, t)
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+ βbVn(x + γ, t)

1 + αUn(x + γ, t)
Un,γ (x, t) − βbαUn(x, t)Vn(x, t)

[1 + αUn(x + γ, t)][1 + αUn(x, t)]Un,γ (x, t)
)

≤ 2Vn,γ (x, t)
(
d2

∫
R

J̃2(x − y)Vn(y, t)dy − (d2 + a)Vn,γ (x, t)

+ βbUn(x, t)

1 + αUn(x + γ, t)
Vn,γ (x, t)

)
+ βbVn(x + γ, t)

1 + αUn(x + γ, t)
(U2

n,γ (x, t) + V2
n,γ (x, t))

+ βbαUn(x, t)Vn(x, t)

[1 + αUn(x + γ, t)][1 + αUn(x, t)] (U
2
n,γ (x, t) + V2

n,γ (x, t))

≤ 4d2ηr̂2
2 − 2

(
d2 + a − βb − βbr̂2

)
V2

n,γ (x, t) + 2βbr̂2U2
n,γ (x, t). (3.18)

Adding the two inequalities (3.17) and (3.18), we deduce from the assumptions that k1 := d1 −
r1 − br̂2 − b

2 − βbr̂2 > 0 and k2 := d2 − βb + a − βbr̂2 − b
2 > 0. Then we obtain that

∂

∂t
(U2

n,γ (x, t) + V2
n,γ (x, t))

≤ 4
(
d1 + d2r̂

2
2

)
η − 2

(
d1 − r1 − br̂2 − b

2
− βbr̂2

)
U2

n,γ (x, t)

− 2

(
d2 + a − βb − βbr̂2 − b

2

)
V2

n,γ (x, t)

= 4
(
d1 + d2r̂

2
2

)
η − 2k1U2

n,γ (x, t) − 2k2V2
n,γ (x, t). (3.19)

Let k = min {k1, k2}. Due to (3.19), we have

∂

∂t

(
U2

n,γ (x, t) + V2
n,γ (x, t)

)
≤4
(
d1 + d2r̂

2
2

)
η − 2k

(
U2

n,γ (x, t) + V2
n,γ (x, t)

)
. (3.20)

Multiplying both sides of (3.20) by e2k(t−s) and integrating from s to t , we have(
U2

n,γ (x, t) + V2
n,γ (x, t)

)

≤e−2k(t−s)
(
U2

n,γ (x, s) + V2
n,γ (x, s)

)
+ 4

(
d1 + d2r̂

2
2

)
η

t∫
s

e−2k(t−θ)dθ. (3.21)

Taking s = −tn from (3.21), we get that

(
U2

n,γ (x, t) + V2
n,γ (x, t)

)

≤e−2k(t+tn)
(
U2

n,γ (x,−tn) + V2
n,γ (x,−tn)

)
+ 2

(
d1 + d2r̂

2
2

)
η

k
.

That is,
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|Un (x + γ, t) − Un (x, t)|2 + |Vn (x + γ, t) − Vn (x, t)|2

≤ |Un(x + γ,−tn) − Un(x,−tn)|2 + |Vn(x + γ,−tn) − Vn(x,−tn)|2 + 2
(
d1 + d2r̂

2
2

)
η

k
.

Since Un(x, −tn) and Vn(x, −tn) are uniformly continuous for x ∈ R, there exists δ3 > 0 such 
that |Un(x + γ,−tn) − Un(x,−tn)| ≤ η1/2 and |Vn(x + γ,−tn) − Vn(x,−tn)| ≤ η1/2 whatever 
|γ | ≤ δ3. Thus, there exists a positive constant D5 and for any γ > 0 such that |γ | ≤ δ :=
min {δ1, δ2, δ3}, we have that for all x ∈ R and t > −tn⎧⎪⎪⎨

⎪⎪⎩
|Un(x + γ, t) − Un(x, t)| ≤

(
2 + 2

(
d1+d2 r̂

2
2

)
k

)
η := D5η,

|Vn(x + γ, t) − Vn(x, t)| ≤
(

2 + 2
(
d1+d2 r̂

2
2

)
k

)
η := D5η.

Furthermore, there exist positive constants D6 and D7 such that for all x ∈ R and t > −tn, it 
follows that∣∣∣ ∂Un

∂t
(x + γ, t) − ∂Un

∂t
(x, t)

∣∣∣
≤
∣∣∣d1 (J1 ∗ (Un(x + γ, t) − Un(x, t))) − (d1 − r1) (Un(x + γ, t) − Un(x, t))

− r1 (Un(x + γ, t) + Un(x, t)) (Un(x + γ, t) − Un(x, t))

− bVn(x + γ, t)

1 + αUn(x + γ, t)
(Un(x + γ, t) − Un(x, t))

− bUn(x, t)

1 + αUn(x + γ, t)
(Vn(x + γ, t) − Vn(x, t))

+ bαUn(x, t)Vn(x, t)

[1 + αUn(x + γ, t)][1 + αUn(x, t)] (Un(x + γ, t) − Un(x, t))

∣∣∣
≤ [(2d1 + 3r1 + 2br̂2

)
D5 + bD5

]
η =: D6η,

and ∣∣∣∣∂Vn

∂t
(x + γ, t) − ∂Vn

∂t
(x, t)

∣∣∣∣≤ D7η.

By the above priori estimates, the Arzelá-Ascoli theorem and a diagonal extraction process, we 
can extract a subsequence tn → ∞ such that

Un(x, t) → U∞(x, t) locally uniformly as n → ∞,

where U∞(x, t) satisfies

∂tU∞(x, t) − d1[(J1 ∗ U∞)(x, t) − U∞(x, t)]

− r1U∞(x, t)

[
1 − U∞(x, t) − bε

r1(1 + αU∞(x, t))

]

≥ 0,
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for (x, t) ∈ R ×R. Moreover, according to (3.16), we have

lim inf
tn→∞ inf

x∈(− l2
2 ,

l2
2 ),t ′∈[ ctn

c′ ,tn]
U(x + ctn + x3, t

′) ≥ η2. (3.22)

Since Un(x + x3, t) = U(x + ctn + x3, t + tn), according to (3.22), we obtain that for any t ≤ 0
with |t | small enough, inf

x∈(− l2
2 ,

l2
2 )

U∞(x + x3, t) ≥ η2. Let Uε be the solution of the following 

equation

{
∂Uε

∂t
(x, t) − d1[(J1 ∗ Uε)(x, t) − Uε(x, t)] − r1Uε(x, t)

[
1 − Uε(x, t) − bε

r1(1+αUε(x,t))

]
= 0,

Uε(x, t) = η2g(x),

(3.23)
where g(x) ∈ C(R, [0, 1]) satisfies g(x) = 1 for x ∈ (− l2

4 + x3, 
l2
4 + x3), g(x) = 0 for x ∈ R \

(− l2
2 + x3, 

l2
2 + x3), and g(x) is monotone increasing in x ∈ (− l2

2 + x3, 
l2
4 + x3) and decreasing 

in x ∈ ( l2
4 + x3, 

l2
2 + x3). Then by comparison principle, we have U∞(x, t) ≥ Uε(x, t). It follows 

from [24, Theorems 3.1 and 3.2] that Uε(x, t) converges locally uniformly to a unique positive 
equilibrium solution of system (3.23), denoted as pε . Hence, U∞(x, ∞) ≥ pε for x ∈ R. By the 
definition of U∞, we then obtain

lim inf
t→∞ U∞(x + ct, t) ≥ pε locally uniformly with respect to x.

Since F(Uε, V ) := 1 −Uε − bV
r1(1+αUε)

decreases monotonically with respect to V and F(pε, ε) =
0, we have pε ≤ 1. Hence, by the arbitrary of ε, it follows that

lim inf
t→∞ U(x + ct, t) = 1

locally uniformly with respect to x ∈R. �
Now, we complete the proof of Proposition 3.3. The statement limt→∞ supc1t<x<c2t

(1 −
U(x, t)) = 0 is a straightforward consequence of Lemma 3.4. Indeed, if this statement is not true, 
then we can assume that there exist two sequences {xn} and {tn} satisfying c1tn < xn < c2tn and 
tn → ∞, as n → ∞, such that lim sup

n→+∞
U(xn, tn) < 1. Let cn = xn

tn
, then cn ∈ (c1, c2) ⊂ (cV , cU ). 

Thus, there exists a subsequence {nj } of {n} such that limj→∞ cnj
= c, where c is a real number 

satisfying c ∈ [c1, c2]. By Lemma 3.4, it then follows that U(xnj
, tnj

) = U(cnj
tnj

, tnj
) → 1 as 

j → ∞. This contradicts lim sup
n→+∞

U(xn, tn) < 1 and the proof of the proposition is completed. �
3.3. Spreading of U and V for 0 ≤ c < cV

Proposition 3.5. Let d1 > r1 +br̂2 + b
2 +βbr̂2 and d2 > βb−a+βbr̂2 + b

2 . For each c ∈ [0, cV ), 
there exists ε > 0 such that the solution (U, V ) of (1.1) with initial data (u0, v0) satisfies:

lim inf
t→∞ inf|x|≤ct

V (x, t) ≥ ε,

lim sup
t→∞

sup U(x, t) ≤ 1 − ε and lim inf
t→∞ inf|x|≤ct

U(x, t) ≥ ε.

|x|≤ct
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We prove this argument in three steps. We first use Lemma 3.6 to prove the “pointwise weak 
spreading” which illustrates that the U -component of the solution of system (1.1) converges 
to neither 0 and 1, and the V -component dose not converge to 0. Then Lemma 3.8 shows the 
“pointwise spreading” which means that the solution is bounded along with the path x = ct by 
some constant ε > 0 as t → +∞. In the last step, we use Lemma 3.10 to prove that the spreading 
is in fact uniform in the interval [−ct, ct] with 0 ≤ c < cV .

Here we assume that c0 is a fixed constant and satisfies 0 ≤ c0 < cV .

Lemma 3.6. (Pointwise weak spreading) There exists ε1(c
0) > 0 such that for any (u0, v0) ∈ H

with u0 �≡ 0, for all c ∈ [0, c0] and x ∈ R:

lim sup
t→∞

U(x + ct, t) ≥ ε1(c
0),

and, if moreover v0 �≡ 0,

{
lim supt→∞ V (x + ct, t) ≥ ε1(c

0),

lim inft→∞ U(x + ct, t) ≤ 1 − ε1(c
0).

Remark 3.7. It follows from this statement that ε1(c
0) can be chosen to be nonincreasing with 

respect to c0.

Proof of Lemma 3.6. Note that when v0 ≡ 0, the equation for U becomes a standard monostable 
type equation with nonlocal dispersal. By Proposition 2.5, U(x + ct, t) converges to 1 as t → ∞
for any x ∈ R and c ∈ [0, cU ). Therefore, we only need to consider the case when v0 is not trivial.

We argue by contradiction by assuming that there exist sequences

{(u0,n, v0,n)}n≥0 ∈ H, {cn}n≥0 ⊂ [0, c0] and {xn}n≥0 ⊂ R,

{tn}n≥0 ⊂ [0,∞) such that tn → +∞,

such that u0,n, v0,n �≡ 0 and one of the following three options holds true:

∀t ≥ tn, Un(xn + cnt, t) ≤ 1

n
, (3.24)

∀t ≥ tn, Un(xn + cnt, t) ≥ 1 − 1

n
, (3.25)

or

∀t ≥ tn, Vn(xn + cnt, t) ≤ 1

n
, (3.26)

where (Un, Vn) is the solution of system (1.1) with initial value (u0,n, v0,n). Without loss of 
generality, we assume that cn → c∞ ∈ [0, c0].

We first prove that (3.24) implies (3.26). Choose any sequence sn ≥ tn. By the arguments 
similar to the Lemma 3.4, we can extract a subsequence such that the following convergence 
holds locally uniform in (x, t) ∈R ×R
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{
lim

n→∞Un (xn + cn (sn + t) + x, sn + t) = U∞(x, t),

lim
n→∞Vn (xn + cn (sn + t) + x, sn + t) = V∞(x, t),

where the limit function (U∞, V∞) is an entire solution of the following system, which is the 
same as (1.1) but there are some additional drift terms:

⎧⎨
⎩

∂tU∞ = d1(J1 ∗ U∞ − U∞) + c∞∇U∞ + U∞
[
r1(1 − U∞) − bV∞

1+αU∞

]
,

∂tV∞ = d2(J2 ∗ V∞ − V∞) + c∞∇V∞ + V∞
[

βbU∞
1+αU∞ − aV∞ − a

]
.

(3.27)

It is easy to see that U∞ ≥ 0 and we deduce from (3.24) that U∞(0, 0) = 0. According to the 
comparison principle in Theorem 2.1, we obtain that U∞ ≡ 0, hence V∞ satisfies

∂tV∞ = d2(J2 ∗ V∞ − V∞) + c∞∇V∞ − aV∞ − aV 2∞.

It is easy to verify that for any t0 ∈ R, the function (x, t) �→ r̂2e−a(t+t0) is an upper solution of 
the above equation, for any t > −t0. Due to V∞(x, −t0) ≤ r̂2 for any t0 ∈ R+, we deduce that 
V∞(x, 0) ≤ r̂2e−at0 . Then we have V∞(x, 0) ≡ 0 as t0 → ∞. Thus,

Vn(xn + cnsn, sn) → 0 as n → ∞.

And since the choice of the sequence sn is arbitrary, (3.26) holds true.
Now, we give the following claim.

Claim∗ In both cases, that is either (3.25) or (3.26) holds, then there exists a sequence {t ′n}n≥0
such that t ′n ≥ tn and for any R > 0,

lim
n→∞ sup

t≥0,x∈[−R,R]
|1 − Un(xn + cn(t

′
n + t) + x, t ′n + t)| = 0. (3.28)

We will prove the Claim∗ in next subsection 3.4. We continue the proof of Lemma 3.6 and 
derive the contradiction mainly through (3.28). Without loss of generality, we first assume that 
t ′n = tn for all n ∈ N . We can see that for any R > 0 and δ > 0, then for any n large enough, any 
t ≥ 0 and x ∈ R:

Un(xn + cn(tn + t) + x, tn + t) ≥ (1 − δ)χ[−R,R](x) =: U(x).

Then applying the comparison principle, we have that

Vn(xn + cn(tn + t) + x, tn + t) ≥ V n(x, t), ∀t ≥ 0, x ∈R,

where V n is the solution of

{
∂tV

n(x, t) = d2(J2 ∗ V n − V n)(x, t) + cn∇V n(x, t) + V n(x, t)
[

βbU(x)

1+αU(x)
− a − aV n(x, t)

]
,

V n(x,0) = Vn (xn + cntn + x, tn) .

(3.29)
576



M. Zhao, R. Yuan, Z. Ma et al. Journal of Differential Equations 316 (2022) 552–598
Similar to the proof of Claim∗ (see Section 3.4 for details), we obtain that the function φR,α2,η(x)

= ηe−α2x cos
(

πx
2R

)
is a sub-solution of (3.29), provided that R is large, α2 ∈ (0, α∗) and η ∈

(0, η0], using the fact that c0 < cV . It follows from the comparison principle that

Vn(xn + cn(tn + t) + x, tn + t) ≥ V n(x, t) ≥ �(x, t), ∀t ≥ 0, x ∈ R, (3.30)

wherein � = �(x, t) is the solution of (3.29) with initial data φR,α2,η. Since function � =
�(x, t) is increasing in time and bounded by r̂2, it converges to some positive stationary so-
lution that does not depend on α2, denoted by qn,R,δ . Furthermore, using a prior estimate and 
Arzelá-Ascoli theorem, we can extract a subsequence of qn,R,δ converging as n → ∞, R → ∞
and δ → 0 to a stationary state q∞ of

d2(J2 ∗ q∞ − q∞) + c∞∇q∞ + q∞
[

βb

1 + α
− a − aq∞

]
= 0. (3.31)

Due to cos
(

πx
2R

)→ 1 locally uniformly as R → ∞, q∞ is bounded and positive. We claim that

inf
x∈R

q∞(x) > 0.

Indeed, notice that if q∞ ≡ q∞(x) is a stationary solution of (3.31), then the map V (x, t) =
q∞(x − c∞t) satisfies

∂tV (x, t) − d2(J2 ∗ V − V )(x, t) = V (x, t)

[
βb

1 + α
− a − aV (x, t)

]
. (3.32)

It follows from Proposition 2.5 that

lim inf
t→∞ inf|x|<c∞t

V (x, t) = r̂2 > 0, c∞ ∈ [0, cV ).

Namely, for each x ∈R and c∞ ∈ [0, cV ), we have

lim inf
t→∞ V (x + c∞t, t) > 0.

Note that V (x + c∞t, t) = q∞(x) for any x ∈ R and t ≥ 0, then we complete the claim. Using 
(3.30), we have

lim inf
t→+∞ Vn (xn + cn (tn + t) + x, tn + t) ≥ infq∞

2
> 0, x ∈ [−R,R],

where R > 0 can be chosen large enough for n large enough. But thanks to the above lower 
estimate, we obtain that

lim sup
t→+∞

Un (xn + cn (tn + t) + x, tn + t) ≤ lim
t→+∞Un(x, t),

where Un denotes the solution of
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{
∂tUn = d1(J1 ∗ Un − Un) + cn∇Un + Un[r1(1 − Un) − infq∞

2(1+αUn)
bχ[−R,R](x)],

Un(x,0) = 1.

Since 1 is a super-solution, the limit of Un as t → +∞ is well-defined and decreases with respect 
to time. Moreover, we claim that this limit stays locally away from 1, uniformly as n → ∞. 
Indeed, we can extract a subsequence of Un(x, t) that converges locally uniformly to the solution 
U∞(x, t) of the same problem where cn is replaced by c∞. Since 1 still is a strict super-solution, 
we have that U∞(0, 1) < 1. Therefore

lim sup
n→∞

Un(0,1) < 1,

and

lim sup
n→∞

lim
t→+∞Un(0, t) < 1,

since Un decreases with respect to time. This contradicts Claim∗ and the proof of Lemma 3.6 is 
completed. �
Lemma 3.8. (Pointwise spreading) There exists ε2(c

0) > 0 such that, for any (u0, v0) ∈ H with 
u0 �≡ 0 and v0 �≡ 0, for all c ∈ [0, c0] and any x ∈ R:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim inf
t→+∞ V (x + ct, t) ≥ ε2

(
c0
)

,

lim inf
t→+∞ U(x + ct, t) ≥ ε2

(
c0
)

,

lim sup
t→+∞

U(x + ct, t) ≤ 1 − ε2

(
c0
)

.

Remark 3.9. Similar to Remark 3.7, we have that ε2(c
0) can be chosen to be nonincreasing with 

respect to c0. We mainly use the idea of uniform persistence theory in dynamical systems to 
prove this lemma, see [14,50,51].

Proof of Lemma 3.8. We argue by contradiction to prove the first assertion, i.e. V spreads 
away from 0. We assume that there are sequences (u0,n, v0,n) ∈ H with u0,n �≡ 0 and v0,n �≡ 0, 
cn ∈ [0, c0] and xn ∈ R, such that

lim inf
t→+∞ Vn(xn + cnt, t) <

1

n
.

Without loss of generality, we assume that c∞ = limn→∞ cn ∈ [0, c0]. By Lemma 3.6, there exist 
two sequences tn → ∞ and sn ∈R+ such that for each n ≥ 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vn(xn + cntn, tn) = ε

2
,

Vn(xn + cnt, t) ≤ ε

2
, ∀t ∈ [tn, tn + sn],

Vn(xn + cn(tn + sn), tn + sn) = 1
,

n
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where ε = ε1(c
0) is provided by Lemma 3.6.

Similar to the previous proof, we extract a converging subsequence

{
lim

n→∞Un(xn + cn(tn + sn) + x, tn + sn + t) = U∞(x, t),

lim
n→∞Vn(xn + cn(tn + sn) + x, tn + sn + t) = V∞(x, t).

The above convergence is locally uniform in (x, t) ∈R ×R and the limit function (U∞, V∞) is 
an entire solution of (1.1). We choose tn and sn such that V∞(0, 0) = 0. Using the comparison 
principle, we obtain that V∞ ≡ 0. In particular, the sequence sn is unbounded. Indeed, assume 
by contraction that limn→∞ sn = s < +∞, then we have

lim
n→+∞Vn(xn + cn(tn + t), tn + t) = 0 ∀t ∈ [0, sn],

which is impossible because

lim
n→+∞Vn(xn + cntn, tn) = ε

2
> 0.

Thus we assume that sn → +∞ as n → +∞.
We now consider the limit functions

⎧⎨
⎩

Ũ (x, t) = lim
n→+∞Un(xn + cntn + x, tn + t),

Ṽ (x, t) = lim
n→+∞Vn(xn + cntn + x, tn + t),

which are well defined as a result of global boundedness and a prior estimate. The pair (Ũ, Ṽ ) is 
a global in time solution of system (1.1), and Ṽ (0, 0) = ε

2 > 0.
We claim that Ũ(x, 0) �≡ 0. Indeed, we argue by contradiction by assuming that Ũ(x, 0) ≡ 0, 

thus Ũ ≡ 0 thanks to the comparison principle. Then Ṽ satisfies

∂t Ṽ (x, t) = d2(J2 ∗ Ṽ − Ṽ )(x, t) − aṼ (x, t) − aṼ 2(x, t). (3.33)

For any t0 ∈ R, define V̂ (x, t) = r̂2e−a(t+t0). It is easy to check that V̂ (x, t) is an upper solution 
of (3.33), for any t > −t0. Since Ṽ (x, −t0) ≤ r̂2 for any t0 ∈ R+, we have Ṽ (x, 0) ≤ r̂2e−at0 . 
Then we obtain that Ṽ (x, 0) ≡ 0 as t0 → ∞. By the comparison principle, we get that Ṽ ≡ 0
which contradicts Ṽ (0, 0) > 0.

Next we take (Ũ, Ṽ ) as a solution of system (1.1) with initial data

(
Ũ0, Ṽ0

)
:= lim

n→+∞ (Un(xn + cntn + x, tn),Vn(xn + cntn + x, tn)) ∈ H,

and Ũ0 �≡ 0, as well as Ṽ0 �≡ 0. By Lemma 3.6, we obtain that

∀x ∈R, lim sup Ṽ (x + ct, t) ≥ ε, for any c ∈ [0, c0].

t→+∞
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On the other hand, for all t ∈ [0, sn),

Vn(xn + cntn + cnt, tn + t) ≤ ε

2
.

Due to sn → +∞, it follows from the locally uniform convergence that

Ṽ (c∞t, t) ≤ ε

2
,∀t ≥ 0,

which contradicts the inequality above provided by Lemma 3.6.
The second and third assertions, namely the spreading properties of U , can be proved with 

similar arguments. �
Lemma 3.10. (Uniform spreading) Let the initial data (u0, v0) ∈ H with u0 �≡ 0 and v0 �≡ 0 be 
given. Then for any 0 ≤ c0 < min{cU , cV }, there exists ε > 0 such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim inf
t→+∞ inf

|x|≤c0t
V (x, t) ≥ ε,

lim inf
t→+∞ inf

|x|≤c0t
U(x, t) ≥ ε,

lim sup
t→+∞

sup
|x|≤c0t

U(x, t) ≤ 1 − ε.

Proof. We argue by contradiction by assuming that there exist tn → +∞, cn ∈ [0, c0] such that

V (cntn, tn) → 0. (3.34)

Without loss of generality, we assume that cn → c∞ ∈ [0, c0] as n → +∞. Choose some small 
δ > 0 such that c∞ + δ < min{cU , cV }, and define the sequence

t ′n := cntn

c∞ + δ
∈ [0, tn), ∀n ≥ 0.

First, we consider the case when the sequence {cntn}n≥0 is bounded, which may happen if c∞ =
0. Then we can extract a subsequence such that cntn → x∞ ∈ R as n → +∞. We consider the 
functions

Ûn(x, t) = U(x + cntn, tn + t), V̂n(x, t) = V (x + cntn, tn + t), (3.35)

and

lim
n→∞ Ûn(x, t) := Û (x, t), lim

n→∞ V̂n(x, t) := V̂ (x, t). (3.36)

Using (3.34), (3.35) and (3.36), we have that

V̂ (0,0) = lim
n→∞V (cntn, tn) = 0.

Then by the comparison principle, we can extract a subsequence such that
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V (cntn + x, tn + t) → 0, as n → +∞,

locally uniformly. Moreover, we have that V (0, tn) → 0 as n → +∞, which contradicts 
Lemma 3.8 with c = 0.

On the other hand, we assume that t ′n → +∞. Then applying Lemma 3.8, one has that

V ((c∞ + δ)t ′n, t ′n) ≥ ε, (3.37)

for each n large enough, where ε = ε2(c∞ + δ) is the constant provided by Lemma 3.8.
We consider the functions

Ũn(x, t) = U(x + cntn, t
′
n + t), Ṽn(x, t) = V (x + cntn, t

′
n + t), (3.38)

and

lim
n→∞ Ũn(x, t) := Ũ (x, t), lim

n→∞ Ṽn(x, t) := Ṽ (x, t).

From (3.38), we can rewrite (3.34) and (3.37) as

Ṽn(0,0) ≥ ε, Ṽn(0, tn − t ′n) → 0.

Now we give the following sequences

t̃n := sup
{

0 ≤ t ≤ tn − t ′n|Ṽn (0, t) ≥ ε
2

}
∈ (0, tn − t ′n

)
,

s̃n := tn − t ′n − t̃n.

Then the following properties can be derived,

Ṽn

(
0, t̃n

)= ε
2 ,

Ṽn (0, t) ≤ ε
2 , ∀t ∈ [t̃n, t̃n + s̃n

]
,

Ṽn

(
0, t̃n + s̃n

)→ 0 as n → +∞.

Similar to the proof of Lemma 3.8, we can draw a contradiction with Lemma 3.6. Thus we obtain 
that

lim inf
t→+∞ inf

|x|≤c0t
V (x, t) ≥ ε.

The second and third statements, namely

lim inf
t→+∞ inf

|x|≤c0t
U(x, t) ≥ ε,

and

lim sup
t→+∞

sup
|x|≤c0t

U(x, t) ≤ 1 − ε,

can be proved with similar arguments. Therefore, we complete the proof of Lemma 3.10. �
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3.4. Proof of Claim∗

In this subsection, we give the proof of Claim∗ introduced in subsection 3.3.

Proof of Claim∗. First, we consider the case when (3.25) holds true. We will prove that Claim∗
holds true for the sequence t ′n = tn. We argue by contradiction by assuming that for some R > 0, 
there is δ > 0, for any sequences sn ≥ tn and x′

n ∈ [−R, R] such that

Un(xn + cnsn + x′
n, sn) ≤ 1 − δ. (3.39)

Using Arzelá-Ascoli theorem again, we extract a converging subsequence

{
lim

n→∞Un (xn + cn (sn + t) + x, sn + t) = U∞(x, t),

lim
n→∞Vn (xn + cn (sn + t) + x, sn + t) = V∞(x, t),

where the limit function (U∞, V∞) is an entire solution of (3.27). It is easy to see that U∞ ≤ 1
and by (3.25), we have that U∞(0, 0) = 1. Therefore, according to the comparison principle 
in Theorem 2.1, we obtain that U∞ ≡ 1 (as well as V∞ ≡ 0). But, since the sequence {x′

n} ⊂
[−R, R] is relatively compact, it follows from (3.39) that

U∞(x′∞,0) ≤ 1 − δ,

where x′∞ is an accumulation point of the sequence {x′
n}. This contradicts U∞ ≡ 1, thus Claim∗

holds true under condition (3.25).
Now we consider the case when (3.26) holds true. We first verify that for any R > 0, the 

following formula holds true

lim
n→∞Vn (xn + cn (tn + t) + x, tn + t) = 0 uniformly on [−R,R] × [0,∞). (3.40)

Indeed, if this is not true, then for some R > 0, there are δ > 0, sn ≥ tn and x′
n ∈ [−R, R] such 

that

Vn(xn + cnsn + x′
n, sn) ≥ δ.

Using again Arzelá-Ascoli theorem, we extract a subsequence, that is, as n → ∞:

{
Un (xn + cn (sn + t) + x, sn + t) → U∞(x, t),

Vn (xn + cn (sn + t) + x, sn + t) → V∞(x, t),

where the above convergence holds locally uniformly and (U∞, V∞) is an entire solution of 
(3.27). By the comparison principle in Theorem 2.1 and (3.26), we obtain that V∞ ≡ 0, which 
contradicts V∞(x′∞, 0) > δ, where x′∞ is an accumulation point of the sequence {x′

n}. Thus, 
(3.40) holds true.

Now we are ready to show (3.28). We have just shown that for any R > 0 and δ > 0, then for 
any sufficiently large n it follows that for each x ∈R and t ≥ 0:
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Vn (xn + cn (tn + t) + x, tn + t) ≤ r̂2χR\[−R,R](x) + δχ[−R,R](x) =: V (x). (3.41)

Applying the comparison principle in Theorem 2.1 and (3.41), we deduce that for each R > 0, 
δ > 0 and n large enough

Un (xn + cn (tn + t) + x, tn + t) ≥ Un(x, t), ∀t ≥ 0, x ∈R, (3.42)

where Un is the solution of

{
∂tU

n(x, t) = d1(J1 ∗ Un − Un)(x, t) + cn∇Un(x, t) + Un
[
r1(1 − Un(x, t)) − bV (x)

1+αUn(x,t)

]
,

Un(x,0) = Un (xn + cntn + x, tn) .

(3.43)
Consider the following operators for x ∈ [−R, R] and R > 0

Qcn[W ](x, t) := d1
[∫

R J1(x − y)W(y, t)dy − W(x, t)
]+ cn∇W(x, t)

+ W(x, t)
[
r1(1 − W(x, t)) − bδ

1+αW(x,t)

]
,

and

Lcn[W ](x, t) := d1

∫
R

J1(x − y)W(y, t)dy + cn∇W(x, t) + m1W(x, t), (3.44)

where m1 will be determined later. Let

φR,α2,η(x) =
{

ηe−α2x cos
(

πx
2R

)
, x ∈ (−R,R),α2 > 0,0 < η ≤ η0,

0, x ∈R \ (−R,R),
(3.45)

where η0 ∈ (0, +∞) and we assume that α2 and η are two independent constants. We claim that 
for R large enough

J1 ∗ φR,α2,η(x) = η

R∫
−R

J1(x − y)e−α2y cos
(πy

2R

)
dy ≥ η

∞∫
−∞

J1(x − y)e−α2y cos
(πy

2R

)
dy.

(3.46)
Indeed, due to anyhow J1 ∗ φR,α2,η(x) ≥ 0, we take without loss of generality that x ∈ (−R, R). 
In order to make (3.46) valid we have to show that for y ∈ R \ (−R, R) either cos

(πy
2R

) ≤ 0
or J1(x − y) = 0. We assume J1 has a compact support, then there exists K such that supp 
J1 ⊂ [−K, K]. If x ∈ (−R, R) and |x −y| ≤ K , then y ∈ (−R −K, R +K) ⊂ (−3R, 3R) when 
K ≤ 2R. Thus, we obtain that cos

(πy
2R

)≤ 0 for y ∈ [−3R, −R] ∪ [R, 3R]. Moreover, since supp 
J1 ⊂ [−K, K] ⊂ (−2R, 2R) when K < 2R, we obtain that J1(x−y) = 0 for y ∈R \(−3R, 3R). 
Thus, we deduce that

η

∞∫
J1(x − y)e−α2y cos

(πy

2R

)
dy
−∞
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=
⎛
⎝ −3R∫

−∞
+

−R∫
−3R

+
R∫

−R

+
3R∫

R

+
∞∫

3R

⎞
⎠J1(x − y)ηe−α2y cos

(πy

2R

)
dy

≤η

R∫
−R

J1(x − y)e−α2y cos
(πy

2R

)
dy.

Taking (3.45) into (3.44) and using (3.46), we obtain that

Lcn[φR,α2,η](x)

≥cn

[
−α2φR,α2,η − πη

2R
e−α2x sin

(πx

2R

)]
+ m1φR,α2,η + d1η

∞∫
−∞

J1(x − y)e−α2y cos
(πy

2R

)
dy

=
⎡
⎣−cnα2 + m1 + d1

∫
R

eα2yJ1(y) cos
(πy

2R

)
dy

⎤
⎦φR,α2,η

+
⎡
⎣− π

2R
cn + d1

∫
R

eα2yJ1(y) sin
(πy

2R

)
dy

⎤
⎦ηe−α2x sin

(πx

2R

)
.

Therefore, Lcn

[
φR,α2,η

]
> 0 on x ∈ [−R, R] if the following two conditions are satisfied:

cn <
1

α2

⎡
⎣m1 + d1

∫
R

eα2yJ1(y) cos
(πy

2R

)
dy

⎤
⎦=: Am1(α2,R), (3.47)

cn = 2Rd1

π

⎡
⎣∫
R

eα2yJ1(y) sin
(πy

2R

)
dy

⎤
⎦=: B(α2,R). (3.48)

We first establish some properties of the functions Am1 and B(α2, R). As R → ∞, we have 
locally uniform convergence of

Am1(α2,R) → Am1(α2) = m1 + d1
∫
R eα2yJ1(y)dy

α2
,

B(α2,R) → B(α2) := d1

∫
R

yeα2yJ1(y)dy.

Differentiation gives

A′
m1

(α2) = (B(α2) − Am1(α2)
)
/α2, (3.49)

B ′(α2) = d1

∫
R

J (y)eα2yy2dy > 0.
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It follows from the properties of the function Am1(α2) that it achieves infimum. Then, there exists 
α∗ > 0 such that Am1(α

∗) = infα2>0 Am1(α2). By the definition of α∗ and (3.49), we obtain that 
B(α∗) = Am1(α

∗). Since B is an increasing function, thus B(α2) < B(α∗) for 0 < α2 < α∗. Then 
we have

Am1(α2) > Am1(α
∗) = B(α∗) > B(α2) for 0 < α2 < α∗. (3.50)

In addition, we define c∗ := Am∗(α∗) with m∗ = r1 − d1 − bδ − r1ε and r1 − bδ − r1ε > 0
for small enough constant ε > 0. We can choose m1 < m∗ such that 0 ≤ cn ≤ c0 < Am1(α

∗) <
Am∗(α∗) = c∗ for any n ≥ 0 and c0 < cV , thus we have 0 ≤ cn ≤ c0 < min{c∗, cV }. Note that 
B(0) < c∗ and B(0) = 0, then we have cn > B(0). Therefore, combined with (3.50), we can 
choose c̃1, c̃2, δ̃, R > 0 such that

B(c̃1) + δ̃ < cn < B(c̃2) − δ̃ and |B(α2,R) − B(α2)| < δ̃.

It follows from the continuity of B(α2, R) and B(α2) that there exists some α2(R) such that 
B(α2(R), R) = cn for all large enough R. Obviously, we can choose R large enough such that 
Am1(α2(R), R) > cn. Thus, we prove that (3.48) and (3.47) hold true.

Hence we obtain Lcn[φR,α2,η](x) > 0 for x ∈ [−R, R]. Note that r1W(1 − W) − bδW
1+αW

≥
(r1 − r1ε − bδ)W for 0 ≤ W ≤ ε and m1 < r1 − d1 − bδ − r1ε. Therefore, we have 
Qcn

[
φR,α2,η

]
> Lcn

[
φR,α2,η

]
> 0 on x ∈ [−R, R], namely,

− d1(J1 ∗ φR,α2,η − φR,α2,η) − cn∇φR,α2,η − φR,α2,η

(
r1 − r1φR,α2,η − bδ

1 + αφR,α2,η

)

< 0 in [−R,R].

Furthermore since supp φR,α2,η ⊂ [−R, R], φR,α2,η is also a sub-solution of equation (3.43)
satisfied by Un, the solution �R,α2,η(x, t) of (3.43) with the initial data �R,α2,η(·, 0) = φR,α2,η(·)
is increasing in time and converges to some positive stationary solution that we denote by pn,R,δ. 
Now we will show that it does not depend on the choice of α2 ∈ (0, α∗) and η ∈ (0, η0]. To do 
this, we simplify the notation of the stationary solution to pα2 , while n, R, δ and η are fixed for 
the time because α2 and η are independent. By the comparison principle, we know that pα2 ≤ pα′
for any α2, α′ ∈ (0, α∗) such that α2 ≥ α′. Next we argue by contradiction by assuming that there 
is 0 < α3 < α1 < α∗ with pα1 �≡ pα3 . Hence by the comparison principle in Theorem 2.1, we 
deduce that pα1 < pα3 . In addition, there exists a point x0 ∈ (−R, R) such that

�R,α1,η(x0,0) < pα3(x0).

Indeed, if it is not true then �R,α1,η(x, 0) ≥ pα3(x) for all x ∈ R, which yields pα1(x) ≥ pα3(x), 
a contradiction. We now consider

α̂ = inf{α2 ≤ α3 : �R,α2,η(x,0) ≤ pα3(x),∀x ∈R}.

Then by the comparison principle in Theorem 2.1, we have that

�R,α̂,η(x,0) < �R,α̂,η(x, t) < pα (x),∀t > 0,∀x ∈R.
3

585



M. Zhao, R. Yuan, Z. Ma et al. Journal of Differential Equations 316 (2022) 552–598
On the other hand, by the definition of α̂ and the function �R,α̂,η having compact support 
[−R, R], there is x0 ∈ [−R, R] such that �R,α̂,η(x0, 0) = pα3(x0), a contradiction. Then, we 
deduce that pα2 ≡ pα1 , for all α2 ∈ (0, α∗). Thus, we conclude that the positive stationary solu-
tion does not depend on α2. In addition, we can use the same method to prove that the positive 
stationary solution does not depend on η, denoted by pn,R,δ.

Because Un is not trivial, we can choose η small enough such that Un(x, 0) ≥ �R,α2,η(x, 0)

for all x ∈ R. Then (3.42) implies that for any R > 0 large enough, δ > 0 small enough and n
large enough:

lim inf
t→+∞ Un (xn + cn (tn + t) + x, tn + t) ≥ pn,R,δ(x), ∀x ∈R. (3.51)

In order to complete the proof of Claim∗, it remains to check that pn,R,δ is close enough to 1 as 
n and R are large and δ is small.

Because pn,R,δ ≤ 1, by using a priori estimate and Arzelá-Ascoli theorem, we can extract a 
subsequence of the function pn,R,δ , as n → ∞, R → ∞ and δ → 0, converging locally uniformly 
to a stationary solution p∞ of

d1(J1 ∗ p∞ − p∞) + c∞∇p∞ + r1p∞(1 − p∞) = 0. (3.52)

Since the map t �→ �R,α2,η(x, t) is nondecreasing for α2 ∈ (0, α∗) and η ∈ (0, η0], we choose 
ᾱ ∈ (0, α∗) such that pn,R,δ(x0) ≥ �R,ᾱ,η0(x0, 0) ≥ η0e−ᾱx0 cos

(
πx0
2R

)
. Notice that cos

(
πx0
2R

)→
1 locally uniformly as R → +∞, hence p∞(x0) ≥ η0e−ᾱx0 and the comparison principle in The-
orem 2.1 shows that p∞ > 0. To conclude we shall use the following lemma for the monostable 
equation:

Lemma 3.11. Let p = p(x) be a stationary of (3.52) such that 0 < p(x) ≤ 1 for all x ∈ R. Then 
p(x) = 1, ∀x ∈R.

Proof. To prove this lemma, first let p ≡ p(x) be a stationary solution of (3.52) and satisfy 
0 < p(x) ≤ 1 for any x ∈R. We know that the map U(x, t) := p(x − c∞t) satisfies

∂tU − d1(J1 ∗ U − U) = r1U(1 − U).

Due to U(x, 0) = p(x) > 0 and c∞ ∈ [0, cU ), it follows from Lemma 2.6 that for each x ∈ R
U(x +c∞t, t) → 1 as t → ∞. In addiction, U(x +c∞t, t) = p(x) for any t ≥ 0 and x ∈ R. Thus 
we complete the proof of the lemma. �

By Lemma 3.11, we can immediately infer that p∞ = 1. Then, choosing R and δ such that 
for any R′ > 0, δ′ > 0 and n large enough, we have

pn,R,δ(x) ≥ 1 − δ′ for any x ∈ (−R′,R′).

It follows from (3.51) that (3.28) holds true. Thus we complete the proof of Claim∗. �

586



M. Zhao, R. Yuan, Z. Ma et al. Journal of Differential Equations 316 (2022) 552–598
4. Fast predator case

In this section, we mainly explore the behavior of the solution of system (1.1) when the prey 
cannot exceed the predator.

Theorem 4.1. (Fast predator) Assume (J1), (J3)-(J4) and (H1) hold. u0, v0 be two given nontriv-
ial compactly supported functions such that (u0, v0) ∈ H . In addition, we further assume that 
d1 > r1 + br̂2 + b

2 + βbr̂2 and d2 > βb − a + βbr̂2 + b
2 .

If cV ≥ cU , then the solution (U, V ) ≡ (U(x, t), V (x, t)) of (1.1) with initial data (u0, v0)

satisfies the following statements.

(i) For any c > cV , then

lim
t→∞ sup

|x|>ct

V (x, t) = 0.

(ii) For any c > cU , then

lim
t→∞ sup

|x|>ct

U(x, t) = 0.

(iii) There exists ε > 0 such that for each c ∈ [0, cU ), one has

lim inf
t→∞ inf|x|≤ct

V (x, t) ≥ ε,

lim sup
t→∞

sup
|x|≤ct

U(x, t) ≤ 1 − ε and lim inf
t→∞ inf|x|≤ct

U(x, t) ≥ ε.

Proof. First, we prove the statement (i). In particular, for any c > cV , there exists some 0 < η < 1
such that

ĉ = inf
0<λ<+∞

d2[
∫
R J2(x)e−λxdx − 1] + κ − a

λ
< c,

where κ := βbη
1+αη

and κ > a. Then there is some λ > 0 such that

�̃2(λ, c) = d2

∫
R

J (y)eλydy − d2 − cλ + κ − a = 0.

Using (3.2), there exists t1 > 0 such that ∀t ≥ t1,

sup
t≥t1

sup
|x|≥ct

U(x, t) ≤ η.

Then the function V 2 = Ae−λ(x−ct) for any constant A > 0 satisfies
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∂tV 2 − d2

∫
R

J (y)V 2(x − y, t)dy + d2V 2 − V 2(κ − a)

=cλV 2 − d2

∫
R

J (y)eλyV 2dy + d2V 2 − V 2(κ − a)

=V 2

⎛
⎝cλ − d2

∫
R

J (y)eλydy + d2 − κ + a

⎞
⎠

=�̃2(λ, c)V 2

=0.

Thus, V 2 is a sub-solution of (1.1) for any t ≥ t1 and x ≥ ct . Furthermore, according to bound-
edness, there is a sufficiently large A such that

V (x, t) ≤ A ≤ V 2(x, t), ∀t ≥ t1, |x| = ct.

It follows from Lemma 2.9 that the equation �2(λ, c) = 0 has two positive roots λ1 = λ1(c), 
λ2 = λ2(c) and 0 < λ1 < λ2 < +∞ for any c > cV . Moreover, there is λ̃ ∈ (λ1, λ2) such that 
�2(λ̃, c) < 0. According to the properties of �̃2(λ, c) and �2(λ, c), we can take 0 < λ < λ1 < λ̃. 
Using (3.3) and choosing A large enough, we have

V (x, t1) ≤ V (x, t1) ≤ V 2(x, t1), for all x ∈R.

Applying the comparison principle, one has

lim
t→∞ sup

|x|>c′t
V (x, t) = 0, ∀c′ > c.

Since c can be chosen arbitrarily close to cV , this means that V does not spread faster than the 
speed cV . Thus, we complete the proof of statement (i).

The proofs of statements (ii) and (iii) are similar to Propositions 3.2 and 3.5, respectively. 
Hence, we omit it. This completes the proof of Theorem 4.1. �
5. Asymptotic behavior of the predator and the prey

This section is mainly concerned with the analysis of the long time behavior of the predator 
and the prey, proving that they will eventually coexist.

Theorem 5.1. In addition to (J1), (J3)-(J4) and (H1) hold, suppose that system (1.1) has a unique 
positive equilibrium point (u∗, v∗). We further assume that r1 > bαr̂2 + 1

2bα, 2a > βbα, d1 >

r1 + br̂2 + b
2 + βbr̂2 and d2 > βb − a + βbr̂2 + b

2 . Let (U, V ) ≡ (U(x, t), V (x, t)) be a solution 
of system (1.1) with nontrivial compactly supported initial data (u0, v0) ∈ H with u0 �≡ 0 and 
v0 �≡ 0. Then for each c ∈ [0, min{cV , cU }) one has

lim
t→∞ sup (|U(x, t) − u∗| + |V (x, t) − v∗|) = 0.
|x|≤ct
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Proof. We proceed by contradiction. Assume that there exist c ∈ [0, min{cV , cU }), a sequence 
{(xk, tk)}k≥0 ⊂ R × (0, ∞) such that tk → ∞ and δ > 0 such that for all k ≥ 0:

|xk| ≤ ctk and |U(xk, tk) − u∗| + |V (xk, tk) − v∗| ≥ δ. (5.1)

Consider the sequence of function (Uk, Vk) defined by

(Uk,Vk)(x, t) = (U,V )(x + xk, t + tk).

We fix c′ > 0 such that c < c′ < cV . From Theorems 3.1 and 4.1, there exist A > 0 large enough 
and ε > 0 small enough such that for k ≥ 0, x ∈R and t ∈ R, we obtain that

t + tk ≥ A and |x| ≤ c′t + (c′ − c)tk ⇒
{

ε ≤ Uk(x, t) ≤ 1,

ε ≤ Vk(x, t) ≤ r̂2.
(5.2)

By some priori estimates, Arzelá-Ascoli theorem and the diagonal extraction process, we can 
extract a subsequence such that

(Uk,Vk)(x, t) → (U∞,V∞)(x, t) locally uniformly for (x, t) ∈ R×R, (5.3)

where (U∞, V∞) is a bounded entire solution of (1.1). Moreover, by (5.2), the function 
(U∞, V∞) satisfies

inf
(x,t)∈R×R

U∞(x, t) > 0 and inf
(x,t)∈R×R

V∞(x, t) > 0,

sup
(x,t)∈R×R

U∞(x, t) ≤ 1,

where (5.1) ensures that

|U∞(0,0) − u∗| + |V∞(0,0) − v∗| ≥ δ. (5.4)

On the other hand, define

W̃ (U,V )(t) = 2
∫
R

[
βu∗g

(
U(x, t)

u∗

)
+ v∗g

(
V (x, t)

v∗

)]
dx,

where g(z) = z − 1 − ln z, z > 0 and g(z) ≥ 0 for all z > 0. Since u0 �≡ 0, v0 �≡ 0 and (u0, v0) ∈
H , then the solution (U, V ) of system (1.1) satisfies

0 < U(x, t) ≤ 1, 0 < V (x, t) ≤ r̂2, ∀(x, t) ∈ R×R.

Thus W̃ (U, V )(t) is well-defined. The derivative of W̃(U, V )(t) along solutions of system (1.1)
is obtained as follows:
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dW̃ (U,V )

dt
(t)

=2
∫
R

[
β

(
1 − u∗

U(x, t)

)
∂U

∂t
(x, t) +

(
1 − v∗

V (x, t)

)
∂V

∂t
(x, t)

]
dx

=2
∫
R

{
β

(
1 − u∗

U(x, t)

)[
d1(J1 ∗ U − U)(x, t) + U(x, t)

(
r1 − r1U(x, t) − bV (x, t)

1 + αU(x, t)

)]

+
(

1 − v∗

V (x, t)

)[
d2(J2 ∗ V − V )(x, t) + V (x, t)

(
βbU(x, t)

1 + αU(x, t)
− a − aV (x, t)

)]}
dx

=2
∫
R

{
β

(
1 − u∗

U(x, t)

)[
d1(J1 ∗ U − U)(x, t) + U(x, t)

(
r1(u

∗ − U(x, t))

+ bv∗

1 + αu∗ − bV (x, t)

1 + αU(x, t)

)]
+
(

1 − v∗

V (x, t)

)[
d2(J2 ∗ V − V )(x, t)

+ V (x, t)
( βbU(x, t)

1 + αU(x, t)
− βbu∗

1 + αu∗ + a(v∗ − V (x, t))
)]}

dx

=2
∫
R

{
β

(
1 − u∗

U(x, t)

)
[d1(J1 ∗ U − U)(x, t)] +

(
1 − v∗

V (x, t)

)
[d2(J2 ∗ V − V )(x, t)]

− r1β(U(x, t) − u∗)2 − a(V (x, t) − v∗)2 + βbαu∗(U(x, t) − u∗)(v ∗ −V (x, t))

(1 + αu∗)(1 + αU(x, t))

+ βbαv∗(U(x, t) − u∗)2

(1 + αu∗)(1 + αU(x, t))

}
dx

≤2
∫
R

{
β

(
1 − u∗

U(x, t)

)⎡⎣d1

∫
R

J1(x − y)U(y, t)dy − d1
U(x, t)

u∗

∫
R

J1(x − y)u∗dy)

⎤
⎦

+
(

1 − v∗

V (x, t)

)⎡⎣d2

∫
R

J2(x − y)V (y, t)dy − d2
V (x, t)

v∗

∫
R

J2(x − y)v∗dy)

⎤
⎦

+
(

βbαv∗

(1 + αu∗)(1 + αU(x, t))
+ βbαu∗

2(1 + αu∗)(1 + αU(x, t))
− r1β

)
(U(x, t) − u∗)2

+
(

βbαu∗

2(1 + αu∗)(1 + αU(x, t))
− a

)
(V (x, t) − v∗)2

}
dx

≤2
∫ [

d1β

(
1 − u∗

U(x, t)

)∫
J1(x − y)U(y, t)dy + d1β

(
1 − U(x, t)

u∗

)∫
J1(x − y)u∗dy
R R R
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+ d2

(
1 − v∗

V (x, t)

)∫
R

J2(x − y)V (y, t)dy + d2

(
1 − V (x, t)

v∗

)∫
R

J2(x − y)v∗dy

+
(

βbαr̂2 + 1

2
βbα − r1β

)
(U(x, t) − u∗)2 +

(
1

2
βbα − a

)
(V (x, t) − v∗)2

]
dx. (5.5)

The third equality of the above formula is based on the fact that E∗ := (u∗, v∗) is the equilibrium 
of system (1.1), namely

{
r1u

∗ + bv∗
1+αu∗ = r1,

βbu∗
1+αu∗ − av∗ = a.

According to the assumptions, we have that

bαr̂2 + 1

2
bα − r1 < 0 and

1

2
βbα − a < 0. (5.6)

Note that

2βd1

∫
R

⎡
⎣(1 − u∗

U(x, t)

)∫
R

J1(x − y)U(y, t)dy +
(

1 − U(x, t)

u∗

)∫
R

J1(x − y)u∗dy

⎤
⎦dx

=2βd1

∫
R

∫
R

J1(x − y)u∗
[(

1 − u∗

U(x, t)

)
U(y, t)

u∗ +
(

1 − U(x, t)

u∗

)]
dydx

=2βd1

∫
R

∫
R

J1(x − y)u∗
[

1 − U(x, t)

u∗ + U(y, t)

u∗ − U(y, t)

U(x, t)

]
dydx

=βd1

∫
R

∫
R

J1(x − y)u∗
[

1 − U(x, t)

u∗ + U(y, t)

u∗ − U(y, t)

U(x, t)

]
dydx

+ βd1

∫
R

∫
R

J1(y − x)u∗
[

1 − U(y, t)

u∗ + U(x, t)

u∗ − U(x, t)

U(y, t)

]
dxdy

=βd1

∫
R

∫
R

J1(x − y)u∗
[

1 − U(x, t)

u∗ + U(y, t)

u∗ − U(y, t)

U(x, t)

]
dydx

+ βd1

∫
R

∫
R

J1(x − y)u∗
[

1 − U(y, t)

u∗ + U(x, t)

u∗ − U(x, t)

U(y, t)

]
dydx

=βd1

∫
R

∫
R

J1(x − y)u∗
[

2 − U(y, t)

U(x, t)
− U(x, t)

U(y, t)

]
dydx. (5.7)

Similarly, one has
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∫
R

⎡
⎣(1 − v∗

V (x, t)

)∫
R

J2(x − y)V (y, t)dy +
(

1 − V (x, t)

v∗

)∫
R

J2(x − y)v∗dy

⎤
⎦

=d2

∫
R

∫
R

J2(x − y)v∗
[

2 − V (y, t)

V (x, t)
− V (x, t)

V (y, t)

]
dydx. (5.8)

Substitute (5.7) and (5.8) to (5.5), it follows from (5.6) that dW̃ (U,V )
dt

(t) ≤ 0. Recall that 0 < U ≤
1, 0 < V ≤ r̂2, thus W̃ (U, V )(t) is non-increasing on t and bounded. There exists a constant M1
such that

M1 ≤ W̃ (Uk,Vk)(t) = W̃ (U,V )(t + tk) ≤ W̃ (U,V )(t).

Thus, there exists a constant w̃ such that

lim
k→∞ W̃ (Uk,Vk)(t) = w̃.

Together with (5.3), it follows that W̃ (U∞, V∞)(t) ≡ w̃. Note that dW̃ (U,V )
dt

(t) = 0 if and only 
if U(x, t) = u∗, V (x, t) = v∗, respectively. Thus (U∞, V∞) = (u∗, v∗) which contradicts (5.4). 
This completes the proof of Theorem 5.1. �
6. Numerical simulation

In this section, we perform some numerical simulations to illustrate the two cases stated in 
Theorems 3.1 and 4.1, respectively.

We choose the kernel function Ji(x) = J�(x) = 1√
2π�2

e
−x2

2�2 (i = 1, 2) and � = 1. Furthermore, 

the initial functions are chosen as

u0(x) =

⎧⎪⎨
⎪⎩

0.3, |x| ≤ 150,
1

500 (300 − |x|), 150 < |x| ≤ 300,

0, |x| > 300,

v0(x) = 1

3
u0(x). (6.1)

For the case when the predator spreads slower than the prey, that is, cV < cU , we fix a = 0.5, 
α = 0.3, β = 0.8, d1 = d2 = 17, r1 = 2.5 and vary the parameters b and r2 = βb

1+α
− a. From 

the definition of cU , we get that cU = 9.527. When the compactly supported disturbance of 
the predator and the prey is initially located at the center of the frame, spatial invasions of the 
predator and the prey arise in both sides of the domain. This phenomenon is depicted in Figs. 1
and 2. Specifically, with the help of MATLAB, we obtain the snapshots of the solution of system 
(1.1) with initial value (6.1) at time t = 28 (see Fig. 1) and at three different times (see Fig. 2).

Fig. 1 shows that the predator invades the environment slower than the prey and the propaga-
tion occurs in two separate processes. More specifically, the prey first invades the environment 
and continues to multiply, making its population density reach the environmental capacity. With 
the invasion of the predator, the predator will capture the prey, so that the density of the prey de-
creases and the density of the predator increases, and finally the predator and the prey coexist. It 
can be seen from Fig. 1 that when the predation rate b increases, the solution of system (1.1) will 
produce damped oscillations, and the greater the predation rate, the larger the magnitude of the 
M. Zhao, R. Yuan, Z. Ma et al. Journal of Differential Equations 316 (2022) 552–598
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Fig. 1. The spatial distributions of the prey U and the predator V at time t = 28 obtained for various different values for 
the parameters b and r2.

Fig. 2. The spatial distributions of the prey U and the predator V at three different times (increasing from left to right) 
with b = 2.5, r2 = 1.0385.
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Fig. 3. The spatial distributions of the prey U and the predator V at time t = 28 obtained for various different values for 
the parameters b, r1 and r2.

oscillations. Fig. 2 shows the spatial distributions of the prey and the predator at three different 
times with the same choices of the parameters as above and with b = 2.5.

For the case when the predator spreads faster than the prey, we fix a = 1.2, α = 0.1, β = 1.5, 
d1 = d2 = 17 and vary the parameters b, r1. First, we consider the case where the speeds of 
the predator and the prey are the same, that is, cV = cU . We consider this situation because 
when the predator spreads faster than the prey, the predator cannot survive without food. From 
the definitions of cV , cU and r2, we can change the value of r1 to ensure that cV = cU when 
the value of b changes. Figs. 3 and 4 show that when the population of the predator grows fast 
enough to catch up with the prey, the two species spread nearly simultaneously. In addition, it 
can be seen from Figs. 3 and 4 that there are some spatial gap between the front of the prey and 
that of the predator, but the gap shall be of order o(t) at most.

Second, we consider the case where the spreading speed of the predator is faster than the prey, 
that is, cV > cU . In addition to the same choice of the parameters as above, we further fix r1 = 1. 
From the definition of cU , we get that cU = 5.913. Based on our theoretical results, namely, 
Theorems 4.1 and 5.1, we can see from Figs. 5 and 6 that the system spreads in fact just as fast 
as the prey. This spreading phenomenon is similar to the first case cV = cU of fast predator. 
M. Zhao, R. Yuan, Z. Ma et al. Journal of Differential Equations 316 (2022) 552–598
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Fig. 4. The spatial distributions of the prey U and the predator V at the three different times (increasing from left to right) 
with b = 2.1, r1 = r2 = 1.6636.

Fig. 5. The spatial distributions of the prey U and the predator V at a time t = 28 obtained for various different values 
for the parameters b and r2.
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Fig. 6. The spatial distributions of the prey U and the predator V at three different times (increasing from left to right) 
with b = 2.1, r2 = 1.6636.

Moreover, Fig. 5 shows that when the predation rate b increases, the solution of system (1.1) will 
produce damped oscillations, and the greater the predation rate, the larger the magnitude of the 
oscillations. Fig. 6 shows the spatial distributions of the prey and the predator at three different 
times.
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